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Abstract

Meta-Black-Box Optimization (MetaBBO) streamlines the automation of opti-
mization algorithm design through meta-learning. It typically employs a bi-level
structure: the meta-level policy undergoes meta-training to reduce the manual
effort required in developing algorithms for low-level optimization tasks. The orig-
inal MetaBox (2023) provided the first open-source framework for reinforcement
learning-based single-objective MetaBBO. However, its relatively narrow scope
no longer keep pace with the swift advancement in this field. In this paper, we
introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a mile-
stone upgrade with four novel features: 1) a unified architecture supporting RL,
evolutionary, and gradient-based approaches, by which we reproduce 23 up-to-date
baselines; 2) efficient parallelization schemes, which reduce the training/testing
time by 10−40x; 3) a comprehensive benchmark suite of 18 synthetic/realistic tasks
(1900+ instances) spanning single-objective, multi-objective, multi-model, and
multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom
analysis/visualization and integrating to external optimization tools/benchmarks.
To show the utility of MetaBox-v2, we carry out a systematic case study that evalu-
ates the built-in baselines in terms of the optimization performance, generalization
ability and learning efficiency. Valuable insights are concluded from thorough and
detailed analysis for practitioners and those new to the field.

1 Introduction

Black-Box-Optimization (BBO) represents challenging optimization tasks in practice. For decades,
many BBO optimizers [1–4] are developed and widely discussed. A key limitation of traditional
BBO optimizers is that they require human experts to design effective algorithms, which might result
in design bias to adapt for novel optimization scenarios [5]. To address this, recent Meta-Black-
Box Optimization (MetaBBO) [6, 7] researches propose meta-learning algorithm design policy by
a bi-level framework: the meta-level policy is trained on a problem distribution to maximize the
performance of low-level BBO optimizer. The trained policy is expected to generalize on unseen
problems. Considering MetaBBO lacks decent benchmark, MetaBox [8] in 2023 served as the first
benchmark platform for developing and evaluating MetaBBO approaches. In particular, this original
version focused on a specific optimization scenario: single-objective optimization, and a specific
learning paradigm: MetaBBO with reinforcement learning (MetaBBO-RL). The reason behind is that
before 2023, a primary research focus in MetaBBO was exploring how to incorporate RL [9] with
BBO optimizers. With 8 popular MetaBBO-RL baselines and 3 basic testsuites, MetaBox provides
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Figure 1: The four novel and user-friendly features of MetaBox-v2.

fully automatic train-test-log workflow with minimal development requirement. It has received
considerable recognition in the field and gathered a MATLAB extension recently [10].

Promising as it is, MetaBBO researches grow up rapidly within the last two years. On the one hand,
more and more novel ideas came out in terms of flexible learning paradigms. According to the latest
survey [6], four major learning paradigms have been discussed: MetaBBO-RL, MetaBBO-SL [11–
13] where supervised learning is used to train the meta-level policy, MetaBBO-NE [14, 15] where
neuroevolution [16] is adopted, and MetaBBO-ICL [17–19] where LLMs with in-context learning [20]
serve as meta-level policies for algorithm design. On the other hand, MetaBBO’s potential has been
widely explored in diverse optimization fields such as multi-objective optimization [21], multi-modal
optimization [22, 23], large-scale global optimization [24, 25], multi-task optimization [26], etc. The
original MetaBox no longer keeps pace with the swift advancement in the field.

We therefore propose MetaBox-v2 through fundamental improvements that systematically address
the above limitations while inheriting the benefits of the original Metabox. To summarize, this study
presents the following key contributions to advancing the MetaBBO benchmark research:

1. Milestone Framework Upgrade (MetaBox-v2): The upgraded MetaBox-v2 introduces four
synergistic enhancements through framework innovations, as illustrated in Figure 1.

1) Unified Integration of All Four MetaBBO Paradigms: Through redefine the algorithmic interfaces,
we now propose the MetaBBO Template for algorithm development. It serves as the first framework
capable of supporting all the four distinct MetaBBO paradigms: MetaBBO-RL, MetaBBO-SL,
MetaBBO-NE, and MetaBBO-ICL. Based on the unified framework, we also extend our baseline
library from 8 to 23 algorithms.

2) Efficient Parallelization: MetaBBO approaches are typically time-consuming due to the nested
bi-level structure. In MetaBox-v2, we introduce two parallel schemes: vectorized optimization
environment and instance-level distributed evaluation, to accelerate MetaBBO by 10− 40x.

3) Rich Benchmarks: To include diverse optimization problem types, we rewrite the Problem class
as an inheritable class. By inheriting from Problem, complex optimization problems such as multi-
objective and multi-task ones can be seamlessly integrated, allowing polymorphism in different
problem-specific behavior. MetaBox-v2 extend the testsuites from 3 to 18 synthetic/realistic tasks.

4) Plentiful and Extensible Interfaces: We thoroughly upgrade MetaBox’s developer flexibility. Every
detailed process data are systematically recorded as metadata, which could be used for customized
analysis by users. Furthermore, to match the open-source ecosystem, MetaBox-v2 provides plentiful
interfaces to external resources. We prepare a systematic online documentation to guide the users.

2. Comprehensive Benchmarking Study: A comprehensive benchmarking study is conducted
to showcase the practical value of MetaBox-v2, where up-to-date MetaBBO baselines are fairly
trained and evaluated in terms of their performance, efficiency, generalization ability, etc. Our
analysis yields valuable insights, particularly the significant variance in baseline generalization
across testsuites and the critical trade-offs between learning efficiency and performance robustness.
These findings establish empirical guidelines for practitioners while identifying promising research
directions, accelerating future advancements in MetaBBO algorithm development.
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Figure 2: Bi-level Paradigm of
existing MetaBBOs.

MetaBBO. We first illustrate the bi-level paradigm of Meta-Black-
Box-Optimization (MetaBBO) [6] in Figure 2. In low-level optimiza-
tion environment, a BBO optimizer A is maintained to optimize a
problem p sampled from distribution P . At each optimization step t,
optimization status features are extracted from the current optimiza-
tion process (such as population and objective values information).
Then in meta level, an algorithm design policy πθ (with learnable
parameters θ) outputs a desired design ωt

i by ωt
i = πθ(s

t
i). A opti-

mizes p by ωt
i for one step. A performance measurement function rt

is used to evaluate the performance gain obtained by this algorithm
design decision. Suppose T optimization steps are allowed for the
low-level optimization process, then πθ is meta-trained to maximize
a meta-objective formulated as: J(θ) = Ep∈P [

∑T
t=1 rt], which is

expectation of accumulated single step performance gain over all
problem instances in P . In practice, a training problem set serves as the distribution P .

Following this paradigm, a wide array of MetaBBO approaches have been proposed, which further
diverge into four same-end branches according to the learning techniques they adopt [6, 7]. The
four branches are: 1) MetaBBO-RL: those first model the algorithm design process as a Markov
Decision Process (MDP), then employ effective RL techniques to learn well-performing policies.
Initial works such as DEDDQN [27], LDE [28], DEDQN [29] and RLEPSO [30] focus on designing
dynamic configuration strategy for BBO optimizer. Following them, in-depth exploration include
high-capacity neural policy [31, 32], complete optimizer generation [33, 34], optimization feature
learning [35, 36] and efficient offline learning [37, 38]; 2) MetaBBO-SL: this branch originates from
RNN-opt [11], where given a solution as input, a RNN is used to auto-regressively iterate it for better
solution. The RNN is trained by minimizing the differentiable objective function. Although this
paradigm requires white-box (differentiable) problems for training, recent works such as GLHF [13]
and B2Opt [12] demonstrate that only training on synthetic problems is sufficient for generalization
towards unseen problems; 3) MetaBBO-NE: where a the meta-level policy is learned by evolutionary
optimization on its net parameters [14, 15, 39]; 4) MetaBBO-ICL: where a general LLM serves as
either the low-level optimizer [17–19], or a meta-level configuration policy [40, 41]. The textual
optimization process information is regarded as the context and learned by the LLM to propose
algorithm designs.

Table 1: Comparison to related benchmarks. #Optimization Scopes: supported optimization problem
types; Learning Support: supported MetaBBO learning paradigms; Parallel: hardware-level paral-
lelism support; #Problem: the number of problem instances (#synthetic + #realistic); #MetaBBO
Baseline: the number of MetaBBO baselines; Template: Template coding support; Auto: automated
train/test workflow; Custom: configurable settings; Visual: visualization tools support; Compatibility:
compatibility with open-source resources.

#Optimization
Scopes

Learning
Support Parallel #Problems #MetaBBO

Baselines Template Auto Custom Visual Compatibility

COCO [42] 4 × × 481+0 × ✓ ✓ × ✓ few
CEC [43] 1 × × 30+0 × × × × × none
IOHprofiler [44] 3 × × 55+0 × ✓ × ✓ ✓ few
Bayesmark [45] 1 × × 0+228 × ✓ ✓ × × few
Zigzag [46] 1 × × 4+0 × × × ✓ × none
Engineering [47] 1 × × +57 × × × × × none
MA-BBOB [48] 1 × × 1000+0 × × × × × none
BBOPlace [49] 1 × × 0+14 × × ✓ × × none
PyPop7 [50] 2 × × 92+11 × × × × × few
EvoX [51] 2 × ✓ 44+50 × ✓ × ✓ ✓ rich
MetaBox [8] 1 RL × 54+280 8 ✓ ✓ ✓ ✓ few

MetaBox-v2 5 RL,SL,
NE,ICL ✓ 541+1393 23 ✓ ✓ ✓ ✓ rich

Related Benchmarks. A comparison of MetaBox-v2 to representative and up-to-date BBO bench-
marks is presented in Table 1 to show the novelty of our work. Apart from those have been reviewed
and compared in MetaBox [8], latest efforts on developing BBO benchmark include: 1) Engineer-
ing [47]: a collection of real world engineering optimization problems such as heat exchanger network
design, industrial chemical process optimization, etc; 2) MA-BBOB [48]: a many-affine problem sets
constructed from COCO [42] by interpolation operations on COCO’s problem instances, resulting in
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Figure 3: Major architecture adjustments in MetaBox-v2.

diversified synthetic instances; 3) BBOPlace [49]: chip placement tasks which represents complex
and challenging optimization scenarios; 4) PyPop7 [50]: a comprehensive benchmark platform
featured by massive number of BBO optimizers, which include decades of advanced optimizers
with different types and specialized scenarios. 5) EvoX [51]: a high-efficiency benchmark platform
featured by its distributed GPU-accelerated evaluation framework, with over 100x speedups than
traditional BBO benchmarks such as CoCo and PyPop7. Notably, MetaBox, across its two versions,
remains the sole platform that supports MetaBBO’s bi-level framework to streamline the development
and benchmarking processes in this research domain.

3 MetaBox-v2

3.1 Unified MetaBBO Interface

Compatibility with Diverse MetaBBO. As reviewed in Section 2, the rapid development in
MetaBBO has witnessed the exploration of various learning paradigms. A fundamental challenge
is that, while sharing the bi-level paradigm, their underlying learning forms differ with each other.
MetaBBO-RL is built on MDP, necessitating a reward signal from the low-level optimization envi-
ronment to train the meta-level RL agent through trial-and-error. MetaBBO-SL and MetaBBO-NE
require gradient information and fitness-like feedback, respectively. To achieve this, in MetaBox-v2,
we replace the original RL-specific agent class with a unified Basic_Agent class featuring universal
train and rollout interfaces. This is achieved through a wrapper function to transform different
learning objective forms into a universal data object (shown in the left of Figure 3).

By such a novel design, we reproduce 15 more representative MetaBBO baselines upon the orig-
inal MetaBox, including 1) MetaBBO-RL: NRLPSO [52], RLDAS [32], SYMBOL [33], GLEET [31],
RLDEAFL [36], Surr_RLDE [37], MADAC [21], PSORLNS [53], RLEMMO [22], L2T [26]; 2) MetaBBO-
SL: GLHF [13], B2OPT [12]; 3) MetaBBO-NE: LES [15], LGA [14]; 4) MetaBBO-ICL: OPRO [17]. In
summary, MetaBox-v2 now supports 36 baselines including 23 MetaBBO baselines and 13 traditional
BBO baselines. It is capable of providing not only comprehensive comparisons and analysis usages,
but also a formal tutorial for those new to this field.

Scalable Testsuites Library. While the original MetaBox supported three synthetic/realistic testsuites
for single-objective optimization (SOO), the up-to-date MetaBBO approaches have been initiated
to multi-objective optimization (MOO) [21, 54], large-scale global optimization (LSGO) [24, 25],
multi-modal optimization (MMO) [22] and multi-task optimization (MTO) [26, 55]. To keep pace
with MetaBBO’s advancement so as to embrace users from diverse optimization sub-domains, we
make a key adjustment to generalizing the SOO-specific problem class in MetaBox into a polymorphic
Basic_Problem parent class (shown in the second column of Figure 3). This abstract base class with
its core eval() interface enables problem specialization through inheritance, namely, users implement
domain-specific evaluation logic by overriding this method.

Specifically, we have integrated 18 testsuites with over 1900 problem instances from diverse prob-
lem types into MetaBox-v2. These problems include not only representative synthetic benchmark
functions for SOO [42], MOO [56–59], LSGO [60], MMO [61] and MTO [62], but also realistic
testsuites with challenging optimization characteristics widely collected from AutoML [63], protein
science [64], UAV system [65] and robotics [51]. We present basic information of them in Table 2.
More details are accessible at the online documentation.
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Table 2: Diverse BBO testsuites in MetaBox-v2.
Name Type Dimension maxFEs Size Scenario Description License
bbob-10D[42] SOO 10D 2E4 24 synthetic Single-objective instances in CoCo BSD-3-Clause
bbob-30D[42] SOO 30D 5E4 24 synthetic Single-objective instances in CoCo BSD-3-Clause
bbob-noisy-10D[42] SOO 10D 2E4 24 synthetic bbob-10D with gaussian noise BSD-3-Clause
bbob-noisy-30D[42] SOO 30D 5E4 24 synthetic bbob-30D with gaussian noise BSD-3-Clause
hpo-b[63] SOO 2-16D 2E3 935 realistic Hyper-parameter optimization MIT License
uav[65] SOO 30D 2.5E3 56 realistic UAV path planning tasks Attribution 4.0
protein[64] SOO 12D 2E3 280 realistic Simplified protein-docking instances Attribution 4.0
lsgo[60] LSGO ≥905D 3E6 20 synthetic Large-scale problem instances GPL-3.0
ne[51] LSGO ≥1000D 2.5E3 66 realistic Neuroevolution for control tasks GPL-3.0
zdt[56] MOO 10-30D 5E3 5 synthetic A group of bi-objective problems Apache-2.0
uf [58] MOO 30D 5E3 10 synthetic Multi-objective problem instances Apache-2.0
dtlz[57] MOO 6-29D 5E3 46 synthetic Scalable multi-objective problems Apache-2.0
wfg[59] MOO 12-38D 5E3 117 synthetic Complex multi-objective problems Apache-2.0
moo-uav[56] MOO 30D 2.5E3 56 realistic Multi-objective form of uav Apache-2.0
mmo[61] MMO 1-20D 5E4-4E5 20 synthetic Standard multi-modal problems Simplified BSD
cec2017mto[62] MTO 25-50D 2.5E4 9 synthetic Multi-task problems in CEC2017 -
wcci2020[62] MTO 50D 6.25E5 10 synthetic Multi-task problems in WCCI2020 -
wcci2020-aug MTO 50D 1.25E5 127 synthetic Flexible combinations of wcci2020 -

Open-Source Ecosystem. MetaBox-v2 exemplifies exceptional extensibility through strategic
integration with established optimization frameworks. For example, some built-in BBO baselines
are implemented by calling powerful platforms such as DEAP [66], PyCMA [67], PyPop7 [50] etc.
Some testsuites are borrowed from emerging benchmark platforms such as EvoX [51] to further
acquire in-testing acceleration. We provide point-to-point tutorial documentation to connect users
with these flexible usages.

3.2 Efficiency Optimization

Parallel Training. The time-consuming training caused by MetaBBO’s bi-level nested paradigm is
a critical but understudied bottleneck in current literature. Our preliminary experiments reveal that
serialized environment evaluations in the original MetaBox lead to prohibitive training times when
handling modern testsuite scales, posing barriers to the rapid development of MetaBBO field. In
MetaBox-v2, to address this efficiency issue, we propose a novel parallel scheme termed as vectorized
optimization environment to accelerate MetaBBO’s training. In specific, as illustrated in the third
column of Figure 3, during the training, we simultaneously construct a batch of low-level optimization
environments and wrap them into a vectorized environment based on Tianshou [68]. Then the meta-
level agent could perform batched algorithm designs via multi-processing parallelization in the
vectorized environment. This allows parallel collection of learning signals (rewards/gradients/fitness
measures) across multiple environments and problem instances, which are aggregated into mini-
batches for efficient meta-policy updates. To the best of our knowledge, MetaBox-v2 is the first
development examplar to make MetaBBO’s training parallel.

Parallel Testing. MetaBox-v2 provides Ray-based parallel scheme [69] for distributed testing of
MetaBBO/BBO baselines. As illustrated in the right of Figure 3, given a MetaBBO’s meta-level agent
and a testsuite, we first copy the agent for each testing run and use Ray to construct the corresponding
sub-tasks. Then all sub-tasks are distributed into independent CPU/GPU cores for parallel testing.
The testing results in these sub-tasks are aggregated automatically by Ray’s handler. By decomposing
parallelism into two orthogonal dimensions: (a) distributed solving across problem instances, and
(b) parallel execution of independent test runs, we introduce four parallel modes: Mode-1: partially
enable (a) by distributing batched problem instances; Mode-2: disable (a) and enable (b) for test run
distribution; Mode-3: enable (a) and disable (b) for instance-wise solving; and Mode-4: enable (a)
and (b) for full parallelization. This design enables flexible hardware scaling.

3.3 Novel Evaluation Metrics

Metadata. MetaBox-v2 inherits the automatic train-test-log workflow of original MetaBox. However,
the original MetaBox does not provide interfaces for users to operate on the process data observed
from both the training and testing. Instead, it provides users post-processed data such as comparison
tables and optimization progress figures. As an emerging topic, it is still an open question how
to measure different MetaBBO approaches with fairness and objectivity. To this end, we open a
data acquirement interface get_metadata() for users who would like to custom their own metrics
in analysis. For example, consider evaluating a pre-trained MetaBBO approach A on a testsuite
D containing N problem instances {p1, ..., pN}. For each problem instance pi, we execute K
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independent runs. Then the metadata mdi for pi is structured as a json object:

{"problem_id":pi, "data":{ "run_1":{"X":List, "Y":List, "T":5.23},
· · · ,
"run_K":{"X":List, "Y":List, "T":4.96} }}

(1)

where "X" is a list of each generation’s solution population, "Y" is a list of the objective values, "T" is
the wall-clock time consumed for optimizing pi. Then the overall metadata md(A,D) is aggregated
from each pi: {"problem_type":SOO, "all_data":[md1, ...,mdN ]}, where "problem_type"
is the optimization types of D. Notably, md(A,D) provide significant convenience for computing
various metrics. We next showcase two customized metrics based on the metadata.

Learning Efficiency Indicator. We provide a novel built-in metric in MetaBox-v2: learning
efficiency, to measure how efficiently a MetaBBO approach learns an effective meta-level policy.
Specifically, during the training of a given algorithm A, we save a series of its model snapshots
{A(g)}Gg=0 where G is the number of training epochs. Evaluating all snapshots on the testsuite D,
we obtain corresponding metadata: {md(A(g),D)}Gg=0. Suppose training A(g) consumes T (g) hours,

then the learning efficiency of A(g) is computed as: Perf(A(g),D)
T (g) . This metric could fairly reflect the

training efficiency of A at different time slots g.

Anti-NFL Indicator. Recall that the core motivation of MetaBBO is to learn generalizable policy
towards unseen problems. This is somewhat against the well-known no-free-lunch theorem [5]. We
hence propose a novel indicator named as Anti-NFL, which could reflect the performance variance
of a given algorithm A on unseen testsuites apart from the one it was trained. Suppose A is trained
on Dtrain, and tested on other B testsuites: {D(b)

test}Bb=1. After obtaining all of the metadata by testing
the final model A(G) on these testsuites, the Anti-NFL is computed as:

Anti-NFL = exp

 1

B

B∑
b=1

Perf
(
A(G),D(b)

test

)
− Perf

(
A(G),Dtrain

)
Perf (A(G),Dtrain )

 (2)

A larger Anti-NFL indicator indicates that A performs robustly under problem-shifts, and vice versa.

4 Benchmarking Study

We present a comprehensive case study on up-to-date MetaBBO approaches through MetaBox-v2,
addressing four critical research questions: RQ1: Does MetaBox-v2 significantly enhance train/test
efficiency compared to the conventional version? RQ2: How effectively do up-to-date MetaBBO
methods generalize under standardized training protocols and diverse test scenarios? RQ3: How to
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objectively compare the dominance relationship of learning efficiency and generalization ability of
baselines? RQ4: How does MetaBBO perform under extreme problem shift in practice?

4.1 Experimental Setup

Baselines. We select 20 baselines from the library of MetaBox-v2 for case study, including 5
traditional BBO optimizers: PSO [2], DE [3], SHADE [70], JDE21 [71], MadDE [72], and 15 up-to-date
MetaBBO baselines from all of four learning paradigms: RNNOPT [11], DEDDQN [27], DEDQN [29],
LDE [28], RLPSO [73], RLEPSO [30], NRLPSO [52], LES [15], GLEET [31], GLHF [13], RLDAS [32],
SYMBOL [33], OPRO [17], B2OPT [12], RLDEAFL [36]. The settings follows their original papers.

Testsuites. First, we employ the bbob-10D testsuite and split its 24 problem instances into 8 training
instances and 16 testing instances, with the latter serving as in-distribution evaluation. Then, the
out-of-distribution evaluation involves four other testsuites: bbob-noisy-30D, protein, uav, and hpo-b.
To ensure the fairness of training, all algorithms undergo 1600 episodes for each training instance.
The testing phases employ 51 independent runs with seed-controlled reproducibility. All experiments
are conducted with 2 AMD EPYC 7H12 CPU, a RTX 3080 GPU and 512GB RAM.

4.2 Platform’s Acceleration Performance (RQ1)

We use vectorized environment with batch_size as 16 to accelerate the training of all involved
MetaBBO baselines. Due to the space limitation, we selectively illustrate in Figure 4 the performance
improvement curves of 8 baselines, where y-axis denotes normalized performance on testing set of
bbob-10D. Compared to original MetaBox, MetaBox-v2 consistently accelerates MetaBBO baselines
by at most 10x. We can observe that the concrete acceleration may varies on different baselines, this
is because the differences of the internal logic and communication cost among the baselines.

We also illustrate the acceleration performance of MetaBox-v2 compared to original MetaBox in
Figure 5 in terms of testing efficiency, where y-axis denotes the throughput of evaluation process
measured by the number of instance test runs per second. We compare the throughput of the 4 Ray
modes in MetaBox-v2 to original MetaBox, and the results show that even the simplest distribution
Mode-1 could significantly accelerate the testing workflow. If users have advanced hardware, the
distribution Mode-4 could introduce no less than 40x acceleration.

4.3 Generalization Performance Comparisons among Baselines (RQ2)

In-distribution Test. Table 3 shows the average results and error bars on the testing set of bbob-10D
across 51 independent runs. We additionally summarize the average ranks among the baselines at
the bottom of the table. The in-distribution test aims at validating the basic learning effectiveness of
MetaBBO since the synthetic problem instances within bbob-10D show certain similarity in landscape
features [74]. Several key observations can be obtained: 1) Overall, on 14 of all 16 testing instances,
MetaBBO baselines attain the best optimization results and advance traditional BBO baselines
by orders of magnitudes. 2) So far, the MetaBBO-RL baselines generally outperform MetaBBO-
SL, MetaBBO-NE and MetaBBO-ICL baselines. 3) We notice that a 2019 method DEDDQN [27]
outperforms other baselines in 6 of 18 testing instances and ranks the first place on average.

Out-of-distribution Test. Figure 6 presents comparative evaluation results across MetaBBO and
traditional BBO baselines using four out-of-distribution testsuites (bbob-noisy-30D, protein, uav,
and hpo-b), with the y-axis representing instance-normalized performance averages. Combining
the results of in-distribution test, several valuable insights are obtained: 1) Generally speaking,
traditional BBO algorithms such as DE, SHADE demonstrate empirical robustness across testsuites,
contrasting with MetaBBO baselines that appear to overestimate their generalization potential; 2) The
out-of-distribution performance of DEDDQN on protein is reversed from its good performance in the
in-distribution test, which might indicates that the overfitting issue should be addressed for future
MetaBBO researches. 3) Almost all of MetaBBO baselines show certain level of performance
oscillation in diverse testsuites, which further underscores that how to define and measure similarity
across diverse BBO problems is crucial to ensure MetaBBO’s generalization.
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Table 3: In-distribution optimization performances of baselines over bbob-10D, with gray box
labeling the best. Due to the space limitation, results for 8 of 16 problem instances in bbob-10D’s
testing set are presented here while the complete results can be accessed at this online page.

Sharp_Ridge Different_Powers Schaffers_HC Composite_GR Schwefel Gallagher_21 Katsuura Lunacek_BR

PSO(1995) [2] 1.905E+02
± 2.156E+01

6.802E-01
± 1.760E-01

5.600E+00
± 1.368E+00

3.290E+00
± 5.796E-01

2.560E+00
± 3.067E-01

6.803E+00
± 6.472E+00

1.272E+00
± 2.933E-01

6.139E+01
± 5.747E+00

DE(1997) [3] 8.588E-01
± 1.054E+00

8.180E-04
± 2.537E-04

9.454E-02
± 6.483E-02

2.577E+00
± 4.860E-01

9.156E-01
± 3.039E-01

3.393E+00
± 4.999E+00

1.467E+00
± 2.734E-01

4.210E+01
± 3.043E+00

SHADE(2013) [70] 1.442E+00
± 4.321E-01

2.721E-04
± 4.192E-05

2.649E-01
± 6.818E-02

2.238E+00
± 3.476E-01

1.338E+00
± 1.957E-01

1.155E+00
± 9.320E-01

1.553E+00
± 3.454E-01

4.248E+01
± 4.209E+00

JDE21(2021) [71] 3.476E+00
± 6.350E+00

4.398E-04
± 3.807E-04

4.496E-01
± 3.700E-01

2.542E+00
± 6.355E-01

5.777E-01
± 2.246E-01

1.604E+00
± 1.641E+00

1.416E+00
± 3.359E-01

4.059E+01
± 7.940E+00

MADDE(2021) [72] 1.736E+00
± 3.300E-01

5.830E-04
± 2.318E-04

9.538E-01
± 2.897E-01

1.077E+00
± 3.709E-01

8.049E-01
± 1.997E-01

5.458E-01
± 7.264E-01

1.350E+00
± 2.395E-01

4.308E+01
± 4.974E+00

RNNOPT(2017) [11] 1.822E+03
±0.000E+00

2.297E+01
±0.000E+00

4.645E+01
±0.000E+00

3.609E+00
±0.000E+00

9.297E+03
±1.819E-12

8.431E+01
±0.000E+00

2.186E+00
±0.000E+00

1.142E+02
±0.000E+00

DEDDQN(2019) [27] 1.841E-03
±1.841E-03

4.224E-09
±4.069E-09

1.080E-02
±7.097E-03

2.480E+00
±5.250E-01

1.720E+00
±4.164E-01

1.574E+00
±9.236E-01

1.344E+00
±2.839E-01

4.039E+01
±4.264E+00

DEDQN(2021) [29] 9.538E+02
±1.548E+02

1.115E+01
±2.837E+00

2.709E+01
±5.790E+00

1.268E+01
±2.131E+00

4.880E+03
±3.385E+03

5.711E+01
±1.366E+01

3.286E+00
±6.136E-01

1.591E+02
±2.132E+01

LDE(2021) [28] 5.955E-01
±5.103E-01

5.159E-05
±3.700E-05

2.156E-01
±1.238E-01

2.024E+00
±1.812E-01

1.071E+00
±1.603E-01

4.292E-01
±7.059E-01

1.306E+00
±2.245E-01

3.616E+01
±3.494E+00

RLPSO(2021) [73] 2.769E+02
±7.000E+01

1.481E+00
±9.514E-01

1.429E+01
±2.968E+00

3.629E+00
±1.115E+00

2.722E+00
±2.998E-01

1.597E+01
±1.719E+01

2.225E+00
±3.550E-01

6.525E+01
±7.460E+00

RLEPSO(2022) [30] 6.388E+00
±6.093E+00

2.554E-04
±1.396E-04

1.687E+00
±7.471E-01

1.387E+00
±4.516E-01

1.261E+00
±2.497E-01

7.703E+00
±1.223E+01

1.017E+00
±2.993E-01

2.413E+01
±7.015E+00

NRLPSO(2023) [52] 1.968E+02
±8.105E+01

6.449E-01
±3.607E-01

5.710E+00
±2.194E+00

3.367E+00
±1.081E+00

2.631E+00
±4.837E-01

7.478E+00
±5.155E+00

1.599E+00
±4.433E-01

7.007E+01
±1.466E+01

LES(2023) [15] 1.099E+03
±1.516E+02

1.273E+01
±2.222E+00

3.812E+01
±6.523E+00

1.215E+01
±2.095E+00

8.044E+03
±4.741E+03

5.777E+01
±2.074E+01

4.099E+00
±9.875E-01

1.793E+02
±2.481E+01

GLEET(2024) [31] 4.464E+00
±7.370E+00

1.130E-04
±8.072E-05

2.137E+00
±1.618E+00

8.624E-01
±3.202E-01

1.481E+00
±1.765E-01

8.632E+00
±1.209E+01

4.839E-01
±2.181E-01

2.717E+01
±8.473E+00

GLHF(2024) [13] 9.652E+02
±1.286E+02

1.074E+01
±1.796E+00

3.163E+01
±5.541E+00

1.027E+01
±1.857E+00

6.827E+03
±4.036E+03

4.923E+01
±1.678E+01

3.527E+00
±9.244E-01

1.582E+02
±2.103E+01

RLDAS(2024) [32] 1.627E+00
±1.073E+00

3.740E-04
±2.542E-04

9.798E-01
±5.450E-01

1.650E+00
±4.859E-01

5.505E-01
±3.074E-01

4.698E-01
±7.563E-01

1.296E+00
±2.623E-01

3.630E+01
±1.035E+01

SYMBOL(2024) [33] 1.344E+01
±9.453E+00

5.332E-03
±2.537E-03

4.256E+00
±2.238E+00

1.383E+00
±4.880E-01

1.732E+00
±2.436E-01

5.611E+00
±4.981E+00

6.371E-01
±3.070E-01

3.188E+01
±1.164E+01

OPRO(2024) [17] 2.003E+03
± 1.562E+02

3.007E+01
± 3.326E+00

5.099E+01
± 9.258E+00

1.434E+01
± 6.317E+00

9.299E+03
± 4.804E+03

9.031E+01
± 2.184E+01

6.113E+00
± 2.771E+00

1.812E+02
± 2.562E+01

B2OPT(2025) [12] 2.581E+02
±3.724E+01

2.510E+00
±3.641E-01

6.057E+00
±1.696E+00

8.728E-01
±2.494E-01

2.543E+00
±1.547E-01

1.130E+01
±7.585E+00

1.575E+00
±2.701E-01

5.814E+01
±6.917E+00

RLDEAFL(2025) [36] 1.136E+01
±1.345E+01

1.487E-04
±9.165E-05

4.166E+00
±2.214E+00

2.535E+00
±1.036E+00

1.397E+00
±3.326E-01

5.452E+00
±6.106E+00

1.199E+00
±6.034E-01

3.231E+01
±7.111E+00

Rank 1:LDE, 2:DEDDQN, 3:RLDAS, 4:SHADE, 5:MADDE, 6:GLEET, 7:RLEPSO, 8:RLDEAFL, 9:JDE21,10:DE,
11:SYMBOL, 12:PSO, 13:B2OPT, 14:NRLPSO, 15:RLPSO, 16:GLHF, 16:DEDQN, 18:RNNOPT, 19:LES, 20:OPRO
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Figure 6: Out-of-distribution generalization performance of baselines on: (a) bbob-noisy-30D; (b)
protein; (c) uav; and (d) hpob.

4.4 Other In-depth Analysis

Although there is continuous discussion on the fairness and objectivity of BBO benchmarks [75–77],
it is still an open challenge for optimization community to agree on a certain golden standard, let
along for the MetaBBO field. We hence provide the following discussions on the objective profiling
of efficiency and generalization of MetaBBO, and the impact analysis of extreme problem shift.

Learning Efficiency (RQ3). Following the computation detail introduced in Section 3.3, we compute
the learning efficiency indicators of all baselines on all testsuites. Their average efficiency values is
shown in the left of Figure 7. Combining the results with the average ranks of baselines in Table 3, we
could conclude that RLDAS [32] is a remarkable MetaBBO baseline since it uses less computational
resource to achieve better optimization performance. In contrast, DEDDQN [27] achieves the best
performance while consuming hundreds of hours for training, which might not be favorable when
the computational resource is limited. It is also worthy to note that MetaBBO-NE approach such as
LES [15] and MetaBBO-ICL approach such as OPRO [17] hold the lowest efficiency due to the nested
evolutionary optimization and the expensive LLM calling, respectively.

Anti-NFL Performance (RQ3). The Anti-NFL indicator computed in Eq. 2 reflects the robustness
of a MetaBBO approach when being generalized to diverse BBO problems. The middle of Figure 7
reports the Anti-NFL indicators of MetaBBO baselines on all testsuites. The conclusions could be
obtained here seems to be different with the aforementioned performance metrics. Two MetaBBO
baselines GLHF [13] and LES [15] have much higher Anti-NFL values than others, while they hold

8

https://github.com/MetaEvo/MetaBox/blob/v2.0.0/for_review/Table3.pdf


0.5

1.0

1.5

2.0

0.44
0.315

0.974

0.304

1.225

0.299

2.063

0.63
0.464

Learning efficiency

0.00

0.02

0.04

0.06

0.009

0.062

0.003

0.03

0.002

0.021

0.0

0.5

1.0

1.5

2.0

2.5

0.71 0.773 0.714 0.778

0.445

0.765 0.787

2.702

0.757

2.517

0.433

0.665

0.325
0.44

0.796

Anti-NFL

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5
X: Learning efficiency
Y: Anti-NFL

RNNOPT
DEDDQN

DEDQN
LDE

RLPSO
RLEPSO

NRLPSO
LES

GLEET
GLHF

RLDAS
SYMBOL

OPRO
B2OPT

RLDEAFL

Figure 7: Left: Learning efficiency comparison of MetaBBO baselines, larger is better. Middle:
Anti-NFL indicator of MetaBBO baselines, larger is better. Right: Domination relationship among
MetaBBO baselines considering learning efficiency and Anti-NFL indicator.

relatively low absolute performance (Table 3). This point deserves in-depth analysis in future works.
While RLDAS has favorable performance and efficiency, its Anti-NFL is among the lowest due to its
meta-level policy’s architecture, which is not generalizable across different problem dimensions.

Combining the results of learning efficiency and Anti-NFL indicator, as illustrated in the right of
Figure 3, we analyze the domination relationship of MetaBBO baselines. It can be observed that, so
far, no baseline participating in this case study dominates all the others. This reflects that there is
certain design tradeoff in existing MetaBBO between the efficiency and effectiveness.
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Figure 8: Comparison on neuroevolu-
tion task by return curves.

Extreme Problem Shift Analysis (RQ4). We evaluate
MetaBBO’s adaptability through an extreme domain shift sce-
nario: algorithms trained on low-dimensional synthetic prob-
lems (bbob-10D) are directly deployed on high-dimensional
neuroevolution tasks (ne), a robotic control benchmark inte-
grated from EvoX [51] where optimizers must tune neural
networks (thousands of parameters) to maximize robotic re-
turns. The results from three Ant tasks (Ant-3, Ant-4, Ant-
5 with 4328, 5384, 6440 parameters) are reported in Fig-
ure 8, which reveal that: 1) Certain MetaBBO methods (e.g.,
GLEET [31] with Transformer meta-policy) achieve perfor-
mance parity or superiority over advanced BBO baselines
(CMAES [4] and GLPSO [78]) despite the exclusive training on
simple problems. 2) MetaBBO performance correlates with
policy architecture complexity—Transformer-based GLEET
maintains robustness across scaling dimensions, while MLP
(RLEPSO [30]) and LSTM (LDE [28]) agents degrade sharply
in higher-dimensional tasks.

5 Discussion

Takeaways. This work proposes MetaBox-v2 as a milestone upgrade for its predecessor, introducing
several key architecture adjustments that establish a comprehensive benchmark platform for the
MetaBBO research. The fundemental advancements not only enable unified development and
evaluation for various MetaBBO paradigms and diverse optimization problem types; but also support
streamlined parallel acceleration for training/evaluation by 10x-40x. With the expanded baseline
library (8 → 23) and testsuite library (3 → 18, 1900+ problem instances), we conduct a rigorous
case study, which discloses insights including but not limited to: 1) Current literature overestimates
MetaBBO capabilities through narrow evaluation practices, with MetaBox-v2 exposing substantial
performance gaps in cross-domain settings. 2) Out-of-distribution generalization demands special
attention, since our analysis reveals that overfitting persists across baseline algorithms. 3) Effective
MetaBBO assessment requires multidimensional analysis (optimization efficacy, learning efficiency,
generalization robustness) beyond traditional convergence metrics.

Future Work. We outline the following directions to continuously improve MetaBox-v2: 1) Maintain
cutting-edge benchmarks through continuous integration of emerging algorithms and problem suites,
with an open-source ecosystem welcoming community contributions; 2) Optimize the parallel
computing framework to achieve higher resource utilization; 3) Lower adoption barriers through
enhanced tutorials and beginner-friendly interfaces. We aim to establish MetaBox-v2 as both a
powerful research platform and an accessible educational resource for the MetaBBO field.
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