
ar
X

iv
:2

50
5.

17
74

5v
1

 [
cs

.L
G

]
 2

3
M

ay
 2

02
5

MetaBox-v2: A Unified Benchmark Platform for
Meta-Black-Box Optimization

Zeyuan Ma1, Yue-Jiao Gong1,∗, Hongshu Guo1, Wenjie Qiu1, Sijie Ma1,
Hongqiao Lian1, Jiajun Zhan1, Kaixu Chen1, Chen Wang1, Zhiyang Huang1,

Zechuan Huang1, Guojun Peng1, Ran Cheng2, Yining Ma3

1South China University of Technology 2Hong Kong Polytechnic University
3Massachusetts Institute of Technology

Abstract

Meta-Black-Box Optimization (MetaBBO) streamlines the automation of opti-
mization algorithm design through meta-learning. It typically employs a bi-level
structure: the meta-level policy undergoes meta-training to reduce the manual
effort required in developing algorithms for low-level optimization tasks. The orig-
inal MetaBox (2023) provided the first open-source framework for reinforcement
learning-based single-objective MetaBBO. However, its relatively narrow scope
no longer keep pace with the swift advancement in this field. In this paper, we
introduce MetaBox-v2 (https://github.com/MetaEvo/MetaBox) as a mile-
stone upgrade with four novel features: 1) a unified architecture supporting RL,
evolutionary, and gradient-based approaches, by which we reproduce 23 up-to-date
baselines; 2) efficient parallelization schemes, which reduce the training/testing
time by 10−40x; 3) a comprehensive benchmark suite of 18 synthetic/realistic tasks
(1900+ instances) spanning single-objective, multi-objective, multi-model, and
multi-task optimization scenarios; 4) plentiful and extensible interfaces for custom
analysis/visualization and integrating to external optimization tools/benchmarks.
To show the utility of MetaBox-v2, we carry out a systematic case study that evalu-
ates the built-in baselines in terms of the optimization performance, generalization
ability and learning efficiency. Valuable insights are concluded from thorough and
detailed analysis for practitioners and those new to the field.

1 Introduction

Black-Box-Optimization (BBO) represents challenging optimization tasks in practice. For decades,
many BBO optimizers [1–4] are developed and widely discussed. A key limitation of traditional
BBO optimizers is that they require human experts to design effective algorithms, which might result
in design bias to adapt for novel optimization scenarios [5]. To address this, recent Meta-Black-
Box Optimization (MetaBBO) [6, 7] researches propose meta-learning algorithm design policy by
a bi-level framework: the meta-level policy is trained on a problem distribution to maximize the
performance of low-level BBO optimizer. The trained policy is expected to generalize on unseen
problems. Considering MetaBBO lacks decent benchmark, MetaBox [8] in 2023 served as the first
benchmark platform for developing and evaluating MetaBBO approaches. In particular, this original
version focused on a specific optimization scenario: single-objective optimization, and a specific
learning paradigm: MetaBBO with reinforcement learning (MetaBBO-RL). The reason behind is that
before 2023, a primary research focus in MetaBBO was exploring how to incorporate RL [9] with
BBO optimizers. With 8 popular MetaBBO-RL baselines and 3 basic testsuites, MetaBox provides

∗Yue-Jiao Gong is the corresponding author (gongyuejiao@gmail.com).

Preprint. Under review.

https://github.com/MetaEvo/MetaBox
https://arxiv.org/abs/2505.17745v1

MetaBox
V2

Four major user-friendly features in MetaBox-v2

Hardware Parallel AccelerationDiverse Optimization Scenarios

Extended Problem sets & Baselines Development Flexibility & Compatibility

Single-Objective
Optimization

Multi-Objective
Optimization

Multi-Modal
Optimization

Optimization
Tasks

Ray
Distribution

Meta-Training

Vectorized
Env

Testing

MetaBox-v2 support 10x faster training & 40x faster testing than MetaBox-v1

Flexible interfaces
for various users

Testing & Fair Comparison
Training MetaBBO

Fast Creation

Analysis & Visualization
Reusable Implementation

Seamless connection
with existing repos

DEAP pycma

EvoX pypop7

sklearn cma

18 synthetic & realistic optimziation problem sets,
over 50 train-test split settings, over 1920 problem instances in total.

CoCo-BBOB-10D Protein-Docking HPO-B UAV Path Planning

DE CMA-ESPSO

36 BBO & MetaBBO baselines, with universal APIs for calling.

LESDEDDQN GLEET

Figure 1: The four novel and user-friendly features of MetaBox-v2.

fully automatic train-test-log workflow with minimal development requirement. It has received
considerable recognition in the field and gathered a MATLAB extension recently [10].

Promising as it is, MetaBBO researches grow up rapidly within the last two years. On the one hand,
more and more novel ideas came out in terms of flexible learning paradigms. According to the latest
survey [6], four major learning paradigms have been discussed: MetaBBO-RL, MetaBBO-SL [11–
13] where supervised learning is used to train the meta-level policy, MetaBBO-NE [14, 15] where
neuroevolution [16] is adopted, and MetaBBO-ICL [17–19] where LLMs with in-context learning [20]
serve as meta-level policies for algorithm design. On the other hand, MetaBBO’s potential has been
widely explored in diverse optimization fields such as multi-objective optimization [21], multi-modal
optimization [22, 23], large-scale global optimization [24, 25], multi-task optimization [26], etc. The
original MetaBox no longer keeps pace with the swift advancement in the field.

We therefore propose MetaBox-v2 through fundamental improvements that systematically address
the above limitations while inheriting the benefits of the original Metabox. To summarize, this study
presents the following key contributions to advancing the MetaBBO benchmark research:

1. Milestone Framework Upgrade (MetaBox-v2): The upgraded MetaBox-v2 introduces four
synergistic enhancements through framework innovations, as illustrated in Figure 1.

1) Unified Integration of All Four MetaBBO Paradigms: Through redefine the algorithmic interfaces,
we now propose the MetaBBO Template for algorithm development. It serves as the first framework
capable of supporting all the four distinct MetaBBO paradigms: MetaBBO-RL, MetaBBO-SL,
MetaBBO-NE, and MetaBBO-ICL. Based on the unified framework, we also extend our baseline
library from 8 to 23 algorithms.

2) Efficient Parallelization: MetaBBO approaches are typically time-consuming due to the nested
bi-level structure. In MetaBox-v2, we introduce two parallel schemes: vectorized optimization
environment and instance-level distributed evaluation, to accelerate MetaBBO by 10− 40x.

3) Rich Benchmarks: To include diverse optimization problem types, we rewrite the Problem class
as an inheritable class. By inheriting from Problem, complex optimization problems such as multi-
objective and multi-task ones can be seamlessly integrated, allowing polymorphism in different
problem-specific behavior. MetaBox-v2 extend the testsuites from 3 to 18 synthetic/realistic tasks.

4) Plentiful and Extensible Interfaces: We thoroughly upgrade MetaBox’s developer flexibility. Every
detailed process data are systematically recorded as metadata, which could be used for customized
analysis by users. Furthermore, to match the open-source ecosystem, MetaBox-v2 provides plentiful
interfaces to external resources. We prepare a systematic online documentation to guide the users.

2. Comprehensive Benchmarking Study: A comprehensive benchmarking study is conducted
to showcase the practical value of MetaBox-v2, where up-to-date MetaBBO baselines are fairly
trained and evaluated in terms of their performance, efficiency, generalization ability, etc. Our
analysis yields valuable insights, particularly the significant variance in baseline generalization
across testsuites and the critical trade-offs between learning efficiency and performance robustness.
These findings establish empirical guidelines for practitioners while identifying promising research
directions, accelerating future advancements in MetaBBO algorithm development.

2

https://metaboxdoc.readthedocs.io

2 Related Works

Low-level Optimization Environment

Meta-level Algorithm Design Policy

Learnable
Agent

BBO Optimizer

BBO Problem Distribution

Algorithm
Design

Optimization
Features

Meta-Objective

Figure 2: Bi-level Paradigm of
existing MetaBBOs.

MetaBBO. We first illustrate the bi-level paradigm of Meta-Black-
Box-Optimization (MetaBBO) [6] in Figure 2. In low-level optimiza-
tion environment, a BBO optimizer A is maintained to optimize a
problem p sampled from distribution P . At each optimization step t,
optimization status features are extracted from the current optimiza-
tion process (such as population and objective values information).
Then in meta level, an algorithm design policy πθ (with learnable
parameters θ) outputs a desired design ωt

i by ωt
i = πθ(s

t
i). A opti-

mizes p by ωt
i for one step. A performance measurement function rt

is used to evaluate the performance gain obtained by this algorithm
design decision. Suppose T optimization steps are allowed for the
low-level optimization process, then πθ is meta-trained to maximize
a meta-objective formulated as: J(θ) = Ep∈P [

∑T
t=1 rt], which is

expectation of accumulated single step performance gain over all
problem instances in P . In practice, a training problem set serves as the distribution P .

Following this paradigm, a wide array of MetaBBO approaches have been proposed, which further
diverge into four same-end branches according to the learning techniques they adopt [6, 7]. The
four branches are: 1) MetaBBO-RL: those first model the algorithm design process as a Markov
Decision Process (MDP), then employ effective RL techniques to learn well-performing policies.
Initial works such as DEDDQN [27], LDE [28], DEDQN [29] and RLEPSO [30] focus on designing
dynamic configuration strategy for BBO optimizer. Following them, in-depth exploration include
high-capacity neural policy [31, 32], complete optimizer generation [33, 34], optimization feature
learning [35, 36] and efficient offline learning [37, 38]; 2) MetaBBO-SL: this branch originates from
RNN-opt [11], where given a solution as input, a RNN is used to auto-regressively iterate it for better
solution. The RNN is trained by minimizing the differentiable objective function. Although this
paradigm requires white-box (differentiable) problems for training, recent works such as GLHF [13]
and B2Opt [12] demonstrate that only training on synthetic problems is sufficient for generalization
towards unseen problems; 3) MetaBBO-NE: where a the meta-level policy is learned by evolutionary
optimization on its net parameters [14, 15, 39]; 4) MetaBBO-ICL: where a general LLM serves as
either the low-level optimizer [17–19], or a meta-level configuration policy [40, 41]. The textual
optimization process information is regarded as the context and learned by the LLM to propose
algorithm designs.

Table 1: Comparison to related benchmarks. #Optimization Scopes: supported optimization problem
types; Learning Support: supported MetaBBO learning paradigms; Parallel: hardware-level paral-
lelism support; #Problem: the number of problem instances (#synthetic + #realistic); #MetaBBO
Baseline: the number of MetaBBO baselines; Template: Template coding support; Auto: automated
train/test workflow; Custom: configurable settings; Visual: visualization tools support; Compatibility:
compatibility with open-source resources.

#Optimization
Scopes

Learning
Support Parallel #Problems #MetaBBO

Baselines Template Auto Custom Visual Compatibility

COCO [42] 4 × × 481+0 × ✓ ✓ × ✓ few
CEC [43] 1 × × 30+0 × × × × × none
IOHprofiler [44] 3 × × 55+0 × ✓ × ✓ ✓ few
Bayesmark [45] 1 × × 0+228 × ✓ ✓ × × few
Zigzag [46] 1 × × 4+0 × × × ✓ × none
Engineering [47] 1 × × +57 × × × × × none
MA-BBOB [48] 1 × × 1000+0 × × × × × none
BBOPlace [49] 1 × × 0+14 × × ✓ × × none
PyPop7 [50] 2 × × 92+11 × × × × × few
EvoX [51] 2 × ✓ 44+50 × ✓ × ✓ ✓ rich
MetaBox [8] 1 RL × 54+280 8 ✓ ✓ ✓ ✓ few

MetaBox-v2 5 RL,SL,
NE,ICL ✓ 541+1393 23 ✓ ✓ ✓ ✓ rich

Related Benchmarks. A comparison of MetaBox-v2 to representative and up-to-date BBO bench-
marks is presented in Table 1 to show the novelty of our work. Apart from those have been reviewed
and compared in MetaBox [8], latest efforts on developing BBO benchmark include: 1) Engineer-
ing [47]: a collection of real world engineering optimization problems such as heat exchanger network
design, industrial chemical process optimization, etc; 2) MA-BBOB [48]: a many-affine problem sets
constructed from COCO [42] by interpolation operations on COCO’s problem instances, resulting in

3

Universal Agent Class Universal Problem Class Vec-Env Training Distributed Testing
Class Basic_Agent

+ init(config)
+ train(opt_env)
+ rollout(opt_env)

Optimization Environment

wrapped training obj.

gradreward fitness

Class Basic_Problem

+ init(config)

+ eval(population)

SOO MOO

Inheritance Rewrite

MetaBBO Agent

Vectorized Optimiztion Envs

opt_env
opt_env opt_env

opt_env

Batched
Algorithm
Designs

Batched
Learning

Objs

Agent
opt_env
opt_env opt_env

opt_env

Ray Sub-tasks

Ray Aggregate

Figure 3: Major architecture adjustments in MetaBox-v2.

diversified synthetic instances; 3) BBOPlace [49]: chip placement tasks which represents complex
and challenging optimization scenarios; 4) PyPop7 [50]: a comprehensive benchmark platform
featured by massive number of BBO optimizers, which include decades of advanced optimizers
with different types and specialized scenarios. 5) EvoX [51]: a high-efficiency benchmark platform
featured by its distributed GPU-accelerated evaluation framework, with over 100x speedups than
traditional BBO benchmarks such as CoCo and PyPop7. Notably, MetaBox, across its two versions,
remains the sole platform that supports MetaBBO’s bi-level framework to streamline the development
and benchmarking processes in this research domain.

3 MetaBox-v2

3.1 Unified MetaBBO Interface

Compatibility with Diverse MetaBBO. As reviewed in Section 2, the rapid development in
MetaBBO has witnessed the exploration of various learning paradigms. A fundamental challenge
is that, while sharing the bi-level paradigm, their underlying learning forms differ with each other.
MetaBBO-RL is built on MDP, necessitating a reward signal from the low-level optimization envi-
ronment to train the meta-level RL agent through trial-and-error. MetaBBO-SL and MetaBBO-NE
require gradient information and fitness-like feedback, respectively. To achieve this, in MetaBox-v2,
we replace the original RL-specific agent class with a unified Basic_Agent class featuring universal
train and rollout interfaces. This is achieved through a wrapper function to transform different
learning objective forms into a universal data object (shown in the left of Figure 3).

By such a novel design, we reproduce 15 more representative MetaBBO baselines upon the orig-
inal MetaBox, including 1) MetaBBO-RL: NRLPSO [52], RLDAS [32], SYMBOL [33], GLEET [31],
RLDEAFL [36], Surr_RLDE [37], MADAC [21], PSORLNS [53], RLEMMO [22], L2T [26]; 2) MetaBBO-
SL: GLHF [13], B2OPT [12]; 3) MetaBBO-NE: LES [15], LGA [14]; 4) MetaBBO-ICL: OPRO [17]. In
summary, MetaBox-v2 now supports 36 baselines including 23 MetaBBO baselines and 13 traditional
BBO baselines. It is capable of providing not only comprehensive comparisons and analysis usages,
but also a formal tutorial for those new to this field.

Scalable Testsuites Library. While the original MetaBox supported three synthetic/realistic testsuites
for single-objective optimization (SOO), the up-to-date MetaBBO approaches have been initiated
to multi-objective optimization (MOO) [21, 54], large-scale global optimization (LSGO) [24, 25],
multi-modal optimization (MMO) [22] and multi-task optimization (MTO) [26, 55]. To keep pace
with MetaBBO’s advancement so as to embrace users from diverse optimization sub-domains, we
make a key adjustment to generalizing the SOO-specific problem class in MetaBox into a polymorphic
Basic_Problem parent class (shown in the second column of Figure 3). This abstract base class with
its core eval() interface enables problem specialization through inheritance, namely, users implement
domain-specific evaluation logic by overriding this method.

Specifically, we have integrated 18 testsuites with over 1900 problem instances from diverse prob-
lem types into MetaBox-v2. These problems include not only representative synthetic benchmark
functions for SOO [42], MOO [56–59], LSGO [60], MMO [61] and MTO [62], but also realistic
testsuites with challenging optimization characteristics widely collected from AutoML [63], protein
science [64], UAV system [65] and robotics [51]. We present basic information of them in Table 2.
More details are accessible at the online documentation.

4

https://metaboxdoc.readthedocs.io/en/latest/guide/DS_BL/index.html

Table 2: Diverse BBO testsuites in MetaBox-v2.
Name Type Dimension maxFEs Size Scenario Description License
bbob-10D[42] SOO 10D 2E4 24 synthetic Single-objective instances in CoCo BSD-3-Clause
bbob-30D[42] SOO 30D 5E4 24 synthetic Single-objective instances in CoCo BSD-3-Clause
bbob-noisy-10D[42] SOO 10D 2E4 24 synthetic bbob-10D with gaussian noise BSD-3-Clause
bbob-noisy-30D[42] SOO 30D 5E4 24 synthetic bbob-30D with gaussian noise BSD-3-Clause
hpo-b[63] SOO 2-16D 2E3 935 realistic Hyper-parameter optimization MIT License
uav[65] SOO 30D 2.5E3 56 realistic UAV path planning tasks Attribution 4.0
protein[64] SOO 12D 2E3 280 realistic Simplified protein-docking instances Attribution 4.0
lsgo[60] LSGO ≥905D 3E6 20 synthetic Large-scale problem instances GPL-3.0
ne[51] LSGO ≥1000D 2.5E3 66 realistic Neuroevolution for control tasks GPL-3.0
zdt[56] MOO 10-30D 5E3 5 synthetic A group of bi-objective problems Apache-2.0
uf [58] MOO 30D 5E3 10 synthetic Multi-objective problem instances Apache-2.0
dtlz[57] MOO 6-29D 5E3 46 synthetic Scalable multi-objective problems Apache-2.0
wfg[59] MOO 12-38D 5E3 117 synthetic Complex multi-objective problems Apache-2.0
moo-uav[56] MOO 30D 2.5E3 56 realistic Multi-objective form of uav Apache-2.0
mmo[61] MMO 1-20D 5E4-4E5 20 synthetic Standard multi-modal problems Simplified BSD
cec2017mto[62] MTO 25-50D 2.5E4 9 synthetic Multi-task problems in CEC2017 -
wcci2020[62] MTO 50D 6.25E5 10 synthetic Multi-task problems in WCCI2020 -
wcci2020-aug MTO 50D 1.25E5 127 synthetic Flexible combinations of wcci2020 -

Open-Source Ecosystem. MetaBox-v2 exemplifies exceptional extensibility through strategic
integration with established optimization frameworks. For example, some built-in BBO baselines
are implemented by calling powerful platforms such as DEAP [66], PyCMA [67], PyPop7 [50] etc.
Some testsuites are borrowed from emerging benchmark platforms such as EvoX [51] to further
acquire in-testing acceleration. We provide point-to-point tutorial documentation to connect users
with these flexible usages.

3.2 Efficiency Optimization

Parallel Training. The time-consuming training caused by MetaBBO’s bi-level nested paradigm is
a critical but understudied bottleneck in current literature. Our preliminary experiments reveal that
serialized environment evaluations in the original MetaBox lead to prohibitive training times when
handling modern testsuite scales, posing barriers to the rapid development of MetaBBO field. In
MetaBox-v2, to address this efficiency issue, we propose a novel parallel scheme termed as vectorized
optimization environment to accelerate MetaBBO’s training. In specific, as illustrated in the third
column of Figure 3, during the training, we simultaneously construct a batch of low-level optimization
environments and wrap them into a vectorized environment based on Tianshou [68]. Then the meta-
level agent could perform batched algorithm designs via multi-processing parallelization in the
vectorized environment. This allows parallel collection of learning signals (rewards/gradients/fitness
measures) across multiple environments and problem instances, which are aggregated into mini-
batches for efficient meta-policy updates. To the best of our knowledge, MetaBox-v2 is the first
development examplar to make MetaBBO’s training parallel.

Parallel Testing. MetaBox-v2 provides Ray-based parallel scheme [69] for distributed testing of
MetaBBO/BBO baselines. As illustrated in the right of Figure 3, given a MetaBBO’s meta-level agent
and a testsuite, we first copy the agent for each testing run and use Ray to construct the corresponding
sub-tasks. Then all sub-tasks are distributed into independent CPU/GPU cores for parallel testing.
The testing results in these sub-tasks are aggregated automatically by Ray’s handler. By decomposing
parallelism into two orthogonal dimensions: (a) distributed solving across problem instances, and
(b) parallel execution of independent test runs, we introduce four parallel modes: Mode-1: partially
enable (a) by distributing batched problem instances; Mode-2: disable (a) and enable (b) for test run
distribution; Mode-3: enable (a) and disable (b) for instance-wise solving; and Mode-4: enable (a)
and (b) for full parallelization. This design enables flexible hardware scaling.

3.3 Novel Evaluation Metrics

Metadata. MetaBox-v2 inherits the automatic train-test-log workflow of original MetaBox. However,
the original MetaBox does not provide interfaces for users to operate on the process data observed
from both the training and testing. Instead, it provides users post-processed data such as comparison
tables and optimization progress figures. As an emerging topic, it is still an open question how
to measure different MetaBBO approaches with fairness and objectivity. To this end, we open a
data acquirement interface get_metadata() for users who would like to custom their own metrics
in analysis. For example, consider evaluating a pre-trained MetaBBO approach A on a testsuite
D containing N problem instances {p1, ..., pN}. For each problem instance pi, we execute K

5

https://metaboxdoc.readthedocs.io/en/latest/guide/Gallery/index.html

0 2 4 6 8 10
0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3
Hour

0.93

0.935

0.94

0.945

0.95

0.955

0 0.25 0.5 0.75 1 1.25 1.5
Hour

0.15

0.175

0.2

0.225

0.25

0 100 200 300 400 500 600 700
Hour

0.925

0.93

0.935

0.94

0.945

0.95

0 0.5 1 1.5 2 2.5 3
Hour

0.845

0.85

0.855

0.86

0.865

Pe
rf

or
m

an
ce

0 20 40 60 80
0.9

0.92

0.94

0.96

0 2 4 6 8
0.6

0.7

0.8

0.9

1

0 2 4 6 8 100.945

0.95

0.955

0.96

0.965

Pe
rf

or
m

an
ce

MetaBox-v2(parallel)
MetaBox-v1(no-parallel)

GLEET SYMBOL RLDEAFL

B2OPT DEDDQN DEDQN RLEPSO

GLHF

Figure 4: Training improvement curves of baselines on Metabox-v2 and MetaBox.

2.00

12.95
18.37

27.36

84.53

GLEET

T
hr

ou
gh

pu
t

0.87

5.66
8.03

11.92

36.23

GLHF
2.97

19.23
27.33

40.73

125.16

SYMBOL
0.11

0.68
0.97

1.43

4.35

RLDEAFL
0.03

0.18
0.26

0.38

1.16

B2OPT
0.05

0.34
0.48

0.71

2.15

DEDDQN
4.53

29.32
41.66

61.90

198.40

DEDQN
2.97

19.21
27.22

40.54

125.11

RLEPSO

V1

V2-mode1

V2-mode2

V2-mode3

V2-mode4

Figure 5: Testing efficiency comparison of MetaBox-v2 (4 parallel modes) and MetaBox.

independent runs. Then the metadata mdi for pi is structured as a json object:

{"problem_id":pi, "data":{ "run_1":{"X":List, "Y":List, "T":5.23},
· · · ,
"run_K":{"X":List, "Y":List, "T":4.96} }}

(1)

where "X" is a list of each generation’s solution population, "Y" is a list of the objective values, "T" is
the wall-clock time consumed for optimizing pi. Then the overall metadata md(A,D) is aggregated
from each pi: {"problem_type":SOO, "all_data":[md1, ...,mdN]}, where "problem_type"
is the optimization types of D. Notably, md(A,D) provide significant convenience for computing
various metrics. We next showcase two customized metrics based on the metadata.

Learning Efficiency Indicator. We provide a novel built-in metric in MetaBox-v2: learning
efficiency, to measure how efficiently a MetaBBO approach learns an effective meta-level policy.
Specifically, during the training of a given algorithm A, we save a series of its model snapshots
{A(g)}Gg=0 where G is the number of training epochs. Evaluating all snapshots on the testsuite D,
we obtain corresponding metadata: {md(A(g),D)}Gg=0. Suppose training A(g) consumes T (g) hours,

then the learning efficiency of A(g) is computed as: Perf(A(g),D)
T (g) . This metric could fairly reflect the

training efficiency of A at different time slots g.

Anti-NFL Indicator. Recall that the core motivation of MetaBBO is to learn generalizable policy
towards unseen problems. This is somewhat against the well-known no-free-lunch theorem [5]. We
hence propose a novel indicator named as Anti-NFL, which could reflect the performance variance
of a given algorithm A on unseen testsuites apart from the one it was trained. Suppose A is trained
on Dtrain, and tested on other B testsuites: {D(b)

test}Bb=1. After obtaining all of the metadata by testing
the final model A(G) on these testsuites, the Anti-NFL is computed as:

Anti-NFL = exp

 1

B

B∑
b=1

Perf
(
A(G),D(b)

test

)
− Perf

(
A(G),Dtrain

)
Perf (A(G),Dtrain)

 (2)

A larger Anti-NFL indicator indicates that A performs robustly under problem-shifts, and vice versa.

4 Benchmarking Study

We present a comprehensive case study on up-to-date MetaBBO approaches through MetaBox-v2,
addressing four critical research questions: RQ1: Does MetaBox-v2 significantly enhance train/test
efficiency compared to the conventional version? RQ2: How effectively do up-to-date MetaBBO
methods generalize under standardized training protocols and diverse test scenarios? RQ3: How to

6

objectively compare the dominance relationship of learning efficiency and generalization ability of
baselines? RQ4: How does MetaBBO perform under extreme problem shift in practice?

4.1 Experimental Setup

Baselines. We select 20 baselines from the library of MetaBox-v2 for case study, including 5
traditional BBO optimizers: PSO [2], DE [3], SHADE [70], JDE21 [71], MadDE [72], and 15 up-to-date
MetaBBO baselines from all of four learning paradigms: RNNOPT [11], DEDDQN [27], DEDQN [29],
LDE [28], RLPSO [73], RLEPSO [30], NRLPSO [52], LES [15], GLEET [31], GLHF [13], RLDAS [32],
SYMBOL [33], OPRO [17], B2OPT [12], RLDEAFL [36]. The settings follows their original papers.

Testsuites. First, we employ the bbob-10D testsuite and split its 24 problem instances into 8 training
instances and 16 testing instances, with the latter serving as in-distribution evaluation. Then, the
out-of-distribution evaluation involves four other testsuites: bbob-noisy-30D, protein, uav, and hpo-b.
To ensure the fairness of training, all algorithms undergo 1600 episodes for each training instance.
The testing phases employ 51 independent runs with seed-controlled reproducibility. All experiments
are conducted with 2 AMD EPYC 7H12 CPU, a RTX 3080 GPU and 512GB RAM.

4.2 Platform’s Acceleration Performance (RQ1)

We use vectorized environment with batch_size as 16 to accelerate the training of all involved
MetaBBO baselines. Due to the space limitation, we selectively illustrate in Figure 4 the performance
improvement curves of 8 baselines, where y-axis denotes normalized performance on testing set of
bbob-10D. Compared to original MetaBox, MetaBox-v2 consistently accelerates MetaBBO baselines
by at most 10x. We can observe that the concrete acceleration may varies on different baselines, this
is because the differences of the internal logic and communication cost among the baselines.

We also illustrate the acceleration performance of MetaBox-v2 compared to original MetaBox in
Figure 5 in terms of testing efficiency, where y-axis denotes the throughput of evaluation process
measured by the number of instance test runs per second. We compare the throughput of the 4 Ray
modes in MetaBox-v2 to original MetaBox, and the results show that even the simplest distribution
Mode-1 could significantly accelerate the testing workflow. If users have advanced hardware, the
distribution Mode-4 could introduce no less than 40x acceleration.

4.3 Generalization Performance Comparisons among Baselines (RQ2)

In-distribution Test. Table 3 shows the average results and error bars on the testing set of bbob-10D
across 51 independent runs. We additionally summarize the average ranks among the baselines at
the bottom of the table. The in-distribution test aims at validating the basic learning effectiveness of
MetaBBO since the synthetic problem instances within bbob-10D show certain similarity in landscape
features [74]. Several key observations can be obtained: 1) Overall, on 14 of all 16 testing instances,
MetaBBO baselines attain the best optimization results and advance traditional BBO baselines
by orders of magnitudes. 2) So far, the MetaBBO-RL baselines generally outperform MetaBBO-
SL, MetaBBO-NE and MetaBBO-ICL baselines. 3) We notice that a 2019 method DEDDQN [27]
outperforms other baselines in 6 of 18 testing instances and ranks the first place on average.

Out-of-distribution Test. Figure 6 presents comparative evaluation results across MetaBBO and
traditional BBO baselines using four out-of-distribution testsuites (bbob-noisy-30D, protein, uav,
and hpo-b), with the y-axis representing instance-normalized performance averages. Combining
the results of in-distribution test, several valuable insights are obtained: 1) Generally speaking,
traditional BBO algorithms such as DE, SHADE demonstrate empirical robustness across testsuites,
contrasting with MetaBBO baselines that appear to overestimate their generalization potential; 2) The
out-of-distribution performance of DEDDQN on protein is reversed from its good performance in the
in-distribution test, which might indicates that the overfitting issue should be addressed for future
MetaBBO researches. 3) Almost all of MetaBBO baselines show certain level of performance
oscillation in diverse testsuites, which further underscores that how to define and measure similarity
across diverse BBO problems is crucial to ensure MetaBBO’s generalization.

7

Table 3: In-distribution optimization performances of baselines over bbob-10D, with gray box
labeling the best. Due to the space limitation, results for 8 of 16 problem instances in bbob-10D’s
testing set are presented here while the complete results can be accessed at this online page.

Sharp_Ridge Different_Powers Schaffers_HC Composite_GR Schwefel Gallagher_21 Katsuura Lunacek_BR

PSO(1995) [2] 1.905E+02
± 2.156E+01

6.802E-01
± 1.760E-01

5.600E+00
± 1.368E+00

3.290E+00
± 5.796E-01

2.560E+00
± 3.067E-01

6.803E+00
± 6.472E+00

1.272E+00
± 2.933E-01

6.139E+01
± 5.747E+00

DE(1997) [3] 8.588E-01
± 1.054E+00

8.180E-04
± 2.537E-04

9.454E-02
± 6.483E-02

2.577E+00
± 4.860E-01

9.156E-01
± 3.039E-01

3.393E+00
± 4.999E+00

1.467E+00
± 2.734E-01

4.210E+01
± 3.043E+00

SHADE(2013) [70] 1.442E+00
± 4.321E-01

2.721E-04
± 4.192E-05

2.649E-01
± 6.818E-02

2.238E+00
± 3.476E-01

1.338E+00
± 1.957E-01

1.155E+00
± 9.320E-01

1.553E+00
± 3.454E-01

4.248E+01
± 4.209E+00

JDE21(2021) [71] 3.476E+00
± 6.350E+00

4.398E-04
± 3.807E-04

4.496E-01
± 3.700E-01

2.542E+00
± 6.355E-01

5.777E-01
± 2.246E-01

1.604E+00
± 1.641E+00

1.416E+00
± 3.359E-01

4.059E+01
± 7.940E+00

MADDE(2021) [72] 1.736E+00
± 3.300E-01

5.830E-04
± 2.318E-04

9.538E-01
± 2.897E-01

1.077E+00
± 3.709E-01

8.049E-01
± 1.997E-01

5.458E-01
± 7.264E-01

1.350E+00
± 2.395E-01

4.308E+01
± 4.974E+00

RNNOPT(2017) [11] 1.822E+03
±0.000E+00

2.297E+01
±0.000E+00

4.645E+01
±0.000E+00

3.609E+00
±0.000E+00

9.297E+03
±1.819E-12

8.431E+01
±0.000E+00

2.186E+00
±0.000E+00

1.142E+02
±0.000E+00

DEDDQN(2019) [27] 1.841E-03
±1.841E-03

4.224E-09
±4.069E-09

1.080E-02
±7.097E-03

2.480E+00
±5.250E-01

1.720E+00
±4.164E-01

1.574E+00
±9.236E-01

1.344E+00
±2.839E-01

4.039E+01
±4.264E+00

DEDQN(2021) [29] 9.538E+02
±1.548E+02

1.115E+01
±2.837E+00

2.709E+01
±5.790E+00

1.268E+01
±2.131E+00

4.880E+03
±3.385E+03

5.711E+01
±1.366E+01

3.286E+00
±6.136E-01

1.591E+02
±2.132E+01

LDE(2021) [28] 5.955E-01
±5.103E-01

5.159E-05
±3.700E-05

2.156E-01
±1.238E-01

2.024E+00
±1.812E-01

1.071E+00
±1.603E-01

4.292E-01
±7.059E-01

1.306E+00
±2.245E-01

3.616E+01
±3.494E+00

RLPSO(2021) [73] 2.769E+02
±7.000E+01

1.481E+00
±9.514E-01

1.429E+01
±2.968E+00

3.629E+00
±1.115E+00

2.722E+00
±2.998E-01

1.597E+01
±1.719E+01

2.225E+00
±3.550E-01

6.525E+01
±7.460E+00

RLEPSO(2022) [30] 6.388E+00
±6.093E+00

2.554E-04
±1.396E-04

1.687E+00
±7.471E-01

1.387E+00
±4.516E-01

1.261E+00
±2.497E-01

7.703E+00
±1.223E+01

1.017E+00
±2.993E-01

2.413E+01
±7.015E+00

NRLPSO(2023) [52] 1.968E+02
±8.105E+01

6.449E-01
±3.607E-01

5.710E+00
±2.194E+00

3.367E+00
±1.081E+00

2.631E+00
±4.837E-01

7.478E+00
±5.155E+00

1.599E+00
±4.433E-01

7.007E+01
±1.466E+01

LES(2023) [15] 1.099E+03
±1.516E+02

1.273E+01
±2.222E+00

3.812E+01
±6.523E+00

1.215E+01
±2.095E+00

8.044E+03
±4.741E+03

5.777E+01
±2.074E+01

4.099E+00
±9.875E-01

1.793E+02
±2.481E+01

GLEET(2024) [31] 4.464E+00
±7.370E+00

1.130E-04
±8.072E-05

2.137E+00
±1.618E+00

8.624E-01
±3.202E-01

1.481E+00
±1.765E-01

8.632E+00
±1.209E+01

4.839E-01
±2.181E-01

2.717E+01
±8.473E+00

GLHF(2024) [13] 9.652E+02
±1.286E+02

1.074E+01
±1.796E+00

3.163E+01
±5.541E+00

1.027E+01
±1.857E+00

6.827E+03
±4.036E+03

4.923E+01
±1.678E+01

3.527E+00
±9.244E-01

1.582E+02
±2.103E+01

RLDAS(2024) [32] 1.627E+00
±1.073E+00

3.740E-04
±2.542E-04

9.798E-01
±5.450E-01

1.650E+00
±4.859E-01

5.505E-01
±3.074E-01

4.698E-01
±7.563E-01

1.296E+00
±2.623E-01

3.630E+01
±1.035E+01

SYMBOL(2024) [33] 1.344E+01
±9.453E+00

5.332E-03
±2.537E-03

4.256E+00
±2.238E+00

1.383E+00
±4.880E-01

1.732E+00
±2.436E-01

5.611E+00
±4.981E+00

6.371E-01
±3.070E-01

3.188E+01
±1.164E+01

OPRO(2024) [17] 2.003E+03
± 1.562E+02

3.007E+01
± 3.326E+00

5.099E+01
± 9.258E+00

1.434E+01
± 6.317E+00

9.299E+03
± 4.804E+03

9.031E+01
± 2.184E+01

6.113E+00
± 2.771E+00

1.812E+02
± 2.562E+01

B2OPT(2025) [12] 2.581E+02
±3.724E+01

2.510E+00
±3.641E-01

6.057E+00
±1.696E+00

8.728E-01
±2.494E-01

2.543E+00
±1.547E-01

1.130E+01
±7.585E+00

1.575E+00
±2.701E-01

5.814E+01
±6.917E+00

RLDEAFL(2025) [36] 1.136E+01
±1.345E+01

1.487E-04
±9.165E-05

4.166E+00
±2.214E+00

2.535E+00
±1.036E+00

1.397E+00
±3.326E-01

5.452E+00
±6.106E+00

1.199E+00
±6.034E-01

3.231E+01
±7.111E+00

Rank 1:LDE, 2:DEDDQN, 3:RLDAS, 4:SHADE, 5:MADDE, 6:GLEET, 7:RLEPSO, 8:RLDEAFL, 9:JDE21,10:DE,
11:SYMBOL, 12:PSO, 13:B2OPT, 14:NRLPSO, 15:RLPSO, 16:GLHF, 16:DEDQN, 18:RNNOPT, 19:LES, 20:OPRO

0 500 1000 1500 2000
FEs

0

0.2

0.4

0.6

0.8
GLEET NRLPSO RLDEAFL LES GLHF SYMBOL OPRO DE DEDQN RLEPSO JDE21 MADDE DEDDQN LDE PSO SHADE

0 500 1000 1500 2000 2500
FEs

0

0.2

0.4

0.6

0.8

0 500 1000 1500 2000
FEs

0

0.2

0.4

0.6

0.8

1

0 10k 20k 30k 40k 50k
FEs

0

0.2

0.4

0.6

0.8

1

Pe
rf

or
m

an
ce

(a) (b) (c) (d)

Figure 6: Out-of-distribution generalization performance of baselines on: (a) bbob-noisy-30D; (b)
protein; (c) uav; and (d) hpob.

4.4 Other In-depth Analysis

Although there is continuous discussion on the fairness and objectivity of BBO benchmarks [75–77],
it is still an open challenge for optimization community to agree on a certain golden standard, let
along for the MetaBBO field. We hence provide the following discussions on the objective profiling
of efficiency and generalization of MetaBBO, and the impact analysis of extreme problem shift.

Learning Efficiency (RQ3). Following the computation detail introduced in Section 3.3, we compute
the learning efficiency indicators of all baselines on all testsuites. Their average efficiency values is
shown in the left of Figure 7. Combining the results with the average ranks of baselines in Table 3, we
could conclude that RLDAS [32] is a remarkable MetaBBO baseline since it uses less computational
resource to achieve better optimization performance. In contrast, DEDDQN [27] achieves the best
performance while consuming hundreds of hours for training, which might not be favorable when
the computational resource is limited. It is also worthy to note that MetaBBO-NE approach such as
LES [15] and MetaBBO-ICL approach such as OPRO [17] hold the lowest efficiency due to the nested
evolutionary optimization and the expensive LLM calling, respectively.

Anti-NFL Performance (RQ3). The Anti-NFL indicator computed in Eq. 2 reflects the robustness
of a MetaBBO approach when being generalized to diverse BBO problems. The middle of Figure 7
reports the Anti-NFL indicators of MetaBBO baselines on all testsuites. The conclusions could be
obtained here seems to be different with the aforementioned performance metrics. Two MetaBBO
baselines GLHF [13] and LES [15] have much higher Anti-NFL values than others, while they hold

8

https://github.com/MetaEvo/MetaBox/blob/v2.0.0/for_review/Table3.pdf

0.5

1.0

1.5

2.0

0.44
0.315

0.974

0.304

1.225

0.299

2.063

0.63
0.464

Learning efficiency

0.00

0.02

0.04

0.06

0.009

0.062

0.003

0.03

0.002

0.021

0.0

0.5

1.0

1.5

2.0

2.5

0.71 0.773 0.714 0.778

0.445

0.765 0.787

2.702

0.757

2.517

0.433

0.665

0.325
0.44

0.796

Anti-NFL

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5
X: Learning efficiency
Y: Anti-NFL

RNNOPT
DEDDQN

DEDQN
LDE

RLPSO
RLEPSO

NRLPSO
LES

GLEET
GLHF

RLDAS
SYMBOL

OPRO
B2OPT

RLDEAFL

Figure 7: Left: Learning efficiency comparison of MetaBBO baselines, larger is better. Middle:
Anti-NFL indicator of MetaBBO baselines, larger is better. Right: Domination relationship among
MetaBBO baselines considering learning efficiency and Anti-NFL indicator.

relatively low absolute performance (Table 3). This point deserves in-depth analysis in future works.
While RLDAS has favorable performance and efficiency, its Anti-NFL is among the lowest due to its
meta-level policy’s architecture, which is not generalizable across different problem dimensions.

Combining the results of learning efficiency and Anti-NFL indicator, as illustrated in the right of
Figure 3, we analyze the domination relationship of MetaBBO baselines. It can be observed that, so
far, no baseline participating in this case study dominates all the others. This reflects that there is
certain design tradeoff in existing MetaBBO between the efficiency and effectiveness.

0

50

100

150

200

250

300

350

R
et

ru
n

0 0.5k 1k 1.5k 2k 2.5k

0

50

100

150

200

250

300

350

400

R
et

ru
n

FEs 0 0.5k 1k 1.5k 2k 2.5k

GLEET
RLEPSO
LDE
GLPSO
CMAES

ant-5ant-4

ant-3

Figure 8: Comparison on neuroevolu-
tion task by return curves.

Extreme Problem Shift Analysis (RQ4). We evaluate
MetaBBO’s adaptability through an extreme domain shift sce-
nario: algorithms trained on low-dimensional synthetic prob-
lems (bbob-10D) are directly deployed on high-dimensional
neuroevolution tasks (ne), a robotic control benchmark inte-
grated from EvoX [51] where optimizers must tune neural
networks (thousands of parameters) to maximize robotic re-
turns. The results from three Ant tasks (Ant-3, Ant-4, Ant-
5 with 4328, 5384, 6440 parameters) are reported in Fig-
ure 8, which reveal that: 1) Certain MetaBBO methods (e.g.,
GLEET [31] with Transformer meta-policy) achieve perfor-
mance parity or superiority over advanced BBO baselines
(CMAES [4] and GLPSO [78]) despite the exclusive training on
simple problems. 2) MetaBBO performance correlates with
policy architecture complexity—Transformer-based GLEET
maintains robustness across scaling dimensions, while MLP
(RLEPSO [30]) and LSTM (LDE [28]) agents degrade sharply
in higher-dimensional tasks.

5 Discussion

Takeaways. This work proposes MetaBox-v2 as a milestone upgrade for its predecessor, introducing
several key architecture adjustments that establish a comprehensive benchmark platform for the
MetaBBO research. The fundemental advancements not only enable unified development and
evaluation for various MetaBBO paradigms and diverse optimization problem types; but also support
streamlined parallel acceleration for training/evaluation by 10x-40x. With the expanded baseline
library (8 → 23) and testsuite library (3 → 18, 1900+ problem instances), we conduct a rigorous
case study, which discloses insights including but not limited to: 1) Current literature overestimates
MetaBBO capabilities through narrow evaluation practices, with MetaBox-v2 exposing substantial
performance gaps in cross-domain settings. 2) Out-of-distribution generalization demands special
attention, since our analysis reveals that overfitting persists across baseline algorithms. 3) Effective
MetaBBO assessment requires multidimensional analysis (optimization efficacy, learning efficiency,
generalization robustness) beyond traditional convergence metrics.

Future Work. We outline the following directions to continuously improve MetaBox-v2: 1) Maintain
cutting-edge benchmarks through continuous integration of emerging algorithms and problem suites,
with an open-source ecosystem welcoming community contributions; 2) Optimize the parallel
computing framework to achieve higher resource utilization; 3) Lower adoption barriers through
enhanced tutorials and beginner-friendly interfaces. We aim to establish MetaBox-v2 as both a
powerful research platform and an accessible educational resource for the MetaBBO field.

9

References
[1] John H Holland. Genetic algorithms. Scientific American, 1992.

[2] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks, 1995.

[3] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 1997.

[4] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehensive introduction.
Natural Computing, 2002.

[5] David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1997.

[6] Zeyuan Ma, Hongshu Guo, Yue-Jiao Gong, Jun Zhang, and Kay Chen Tan. Toward automated
algorithm design: A survey and practical guide to meta-black-box-optimization. arXiv preprint
arXiv:2411.00625, 2024.

[7] Xu Yang, Rui Wang, Kaiwen Li, and Hisao Ishibuchi. Meta-black-box optimization for
evolutionary algorithms: Review and perspective. Swarm and Evolutionary Computation, 2025.

[8] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining
Ma, and Zhiguang Cao. Metabox: A benchmark platform for meta-black-box optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 2023.

[9] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. 1998.

[10] Xu Yang, Rui Wang, Kaiwen Li, Wenhua Li, Tao Zhang, and Fujun He. Platmetax: An
integrated matlab platform for meta-black-box optimization. arXiv preprint arXiv:2503.22722,
2025.

[11] Vishnu TV, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, and Gautam Shroff. Meta-learning
for black-box optimization. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2019.

[12] Xiaobin Li, Kai Wu, Xiaoyu Zhang, and Handing Wang. B2opt: Learning to optimize black-box
optimization with little budget. In Proceedings of the AAAI Conference on Artificial Intelligence,
2025.

[13] Xiaobin Li, Kai Wu, Xiaoyu Zhang, Handing Wang, Jing Liu, et al. Pretrained optimization
model for zero-shot black box optimization. Advances in Neural Information Processing
Systems, 2024.

[14] Robert Lange, Tom Schaul, Yutian Chen, Chris Lu, Tom Zahavy, Valentin Dalibard, and
Sebastian Flennerhag. Discovering attention-based genetic algorithms via meta-black-box
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference, 2023.

[15] Robert Lange, Tom Schaul, Yutian Chen, Tom Zahavy, Valentin Dalibard, Chris Lu, Satinder
Singh, and Sebastian Flennerhag. Discovering evolution strategies via meta-black-box optimiza-
tion. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation,
2023.

[16] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural
networks through neuroevolution. Nature Machine Intelligence, 2019.

[17] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[18] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and
Yue-Jiao Gong. LLaMoCo: Instruction tuning of large language models for optimization code
generation. arXiv preprint arXiv:2403.01131, 2024.

10

[19] Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu, Jun Zhou, Aimin Zhou, and Yang Yu. Llmopt:
Learning to define and solve general optimization problems from scratch. arXiv preprint
arXiv:2410.13213, 2024.

[20] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022.

[21] Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu.
Multi-agent dynamic algorithm configuration. Advances in Neural Information Processing
Systems, 2022.

[22] Hongqiao Lian, Zeyuan Ma, Hongshu Guo, Ting Huang, and Yue-Jiao Gong. Rlemmo:
Evolutionary multimodal optimization assisted by deep reinforcement learning. In Proceedings
of the Genetic and Evolutionary Computation Conference, 2024.

[23] Zeyuan Ma, Hongqiao Lian, Wenjie Qiu, and Yue-Jiao Gong. Accurate peak detection in
multimodal optimization via approximated landscape learning. In Proceedings of the Genetic
and Evolutionary Computation Conference, 2025.

[24] Hongshu Guo, Wenjie Qiu, Zeyuan Ma, Xinglin Zhang, Jun Zhang, and Yue-Jiao Gong.
Advancing cma-es with learning-based cooperative coevolution for scalable optimization. arXiv
preprint arXiv:2504.17578, 2025.

[25] Shuai Shao, Ye Tian, Yajie Zhang, and Xingyi Zhang. Knowledge learning-based dimen-
sionality reduction for solving large-scale sparse multiobjective optimization problems. IEEE
Transactions on Cybernetics, 2025.

[26] Sheng-Hao Wu, Yuxiao Huang, Xingyu Wu, Liang Feng, Zhi-Hui Zhan, and Kay Chen Tan.
Learning to transfer for evolutionary multitasking. IEEE Transactions on Cybernetics, 2025.

[27] Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kazakov. Deep
reinforcement learning based parameter control in differential evolution. In Proceedings of the
Genetic and Evolutionary Computation Conference, 2019.

[28] Jianyong Sun, Xin Liu, Thomas Bäck, and Zongben Xu. Learning adaptive differential evolution
algorithm from optimization experiences by policy gradient. IEEE Transactions on Evolutionary
Computation, 2021.

[29] Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy based on
deep reinforcement learning. Applied Soft Computing, 2021.

[30] Shiyuan Yin, Yi Liu, GuoLiang Gong, Huaxiang Lu, and Wenchang Li. RLEPSO: Rein-
forcement learning based ensemble particle swarm optimizer. In Proceedings of the 2021 4th
International Conference on Algorithms, Computing and Artificial Intelligence, 2021.

[31] Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring
exploration-exploitation tradeoff in evolutionary computation via deep reinforcement learning.
In Proceedings of the Genetic and Evolutionary Computation Conference, 2024.

[32] Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun
Zhang, and Yue-Jiao Gong. Deep reinforcement learning for dynamic algorithm selection: A
proof-of-principle study on differential evolution. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2024.

[33] Jiacheng Chen, Zeyuan Ma, Hongshu Guo, Yining Ma, Jie Zhang, and Yue-Jiao Gong. Symbol:
Generating flexible black-box optimizers through symbolic equation learning. In The Twelfth
International Conference on Learning Representations, 2024.

[34] Qi Zhao, Tengfei Liu, Bai Yan, Qiqi Duan, Jian Yang, and Yuhui Shi. Automated metaheuristic
algorithm design with autoregressive learning. IEEE Transactions on Evolutionary Computation,
2024.

11

[35] Zeyuan Ma, Jiacheng Chen, Hongshu Guo, and Yue-Jiao Gong. Neural exploratory landscape
analysis for meta-black-box-optimization. In The Thirteenth International Conference on
Learning Representations, 2025.

[36] Hongshu Guo, Sijie Ma, Zechuan Huang, Yuzhi Hu, Zeyuan Ma, Xinglin Zhang, and Yue-Jiao
Gong. Reinforcement learning-based self-adaptive differential evolution through automated
landscape feature learning. arXiv preprint arXiv:2503.18061, 2025.

[37] Zeyuan Ma, Zhiyang Huang, Jiacheng Chen, Zhiguang Cao, and Yue-Jiao Gong. Surrogate
learning in meta-black-box optimization: A preliminary study. arXiv preprint arXiv:2503.18060,
2025.

[38] Zeyuan Ma, Zhiguang Cao, Zhou Jiang, Hongshu Guo, and Yue-Jiao Gong. Meta-black-box-
optimization through offline q-function learning. In Forty-second International Conference on
Machine Learning, 2025.

[39] Robert Lange, Yingtao Tian, and Yujin Tang. Evolution transformer: In-context evolution-
ary optimization. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2024.

[40] Xingyu Wu, Yan Zhong, Jibin Wu, Bingbing Jiang, and Kay Chen Tan. Large language model-
enhanced algorithm selection: Towards comprehensive algorithm representation. In The 33rd
International Joint Conference on Artificial Intelligence, 2024.

[41] Niki van Stein and Thomas Bäck. Llamea: A large language model evolutionary algorithm
for automatically generating metaheuristics. IEEE Transactions on Evolutionary Computation,
2024.

[42] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
Coco: A platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software, 2021.

[43] JJ Liang, BY Qu, PN Suganthan, and Q Chen. Problem definitions and evaluation criteria for
the cec 2015 competition on learning-based real-parameter single objective optimization. In
Proceedings of the 2015 IEEE Congress on Evolutionary Computation, 2015.

[44] Carola Doerr, Hao Wang, Furong Ye, Sander Van Rijn, and Thomas Bäck. Iohprofiler: A bench-
marking and profiling tool for iterative optimization heuristics. arXiv preprint arXiv:1810.05281,
2018.

[45] R.Turner and D.Eriksson. Bayesmark: Benchmark framework to easily compare bayesian
optimization methods on real machine learning tasks, 2019. URL https://github.com/
uber/bayesmark.

[46] Jakub Kudela and Radomil Matousek. New benchmark functions for single-objective optimiza-
tion based on a zigzag pattern. IEEE Access, 2022.

[47] Abhishek Kumar, Guohua Wu, Mostafa Z Ali, Rammohan Mallipeddi, Ponnuthurai Nagaratnam
Suganthan, and Swagatam Das. A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results. Swarm and Evolutionary Computation, 2020.

[48] Diederick Vermetten, Furong Ye, Thomas Bäck, and Carola Doerr. Ma-bbob: Many-affine
combinations of bbob functions for evaluating automl approaches in noiseless numerical black-
box optimization contexts. In International Conference on Automated Machine Learning.
PMLR, 2023.

[49] Ke Xue, Ruo-Tong Chen, Rong-Xi Tan, Xi Lin, Yunqi Shi, Siyuan Xu, Mingxuan Yuan, and
Chao Qian. Bboplace-bench: Benchmarking black-box optimization for chip placement. 2024.

[50] Qiqi Duan, Guochen Zhou, Chang Shao, Zhuowei Wang, Mingyang Feng, Yuwei Huang, Yajing
Tan, Yijun Yang, Qi Zhao, and Yuhui Shi. Pypop7: A pure-python library for population-based
black-box optimization. Journal of Machine Learning Research, 2024.

12

https://github.com/uber/bayesmark
https://github.com/uber/bayesmark

[51] Beichen Huang, Ran Cheng, Zhuozhao Li, Yaochu Jin, and Kay Chen Tan. Evox: A distributed
gpu-accelerated framework for scalable evolutionary computation. IEEE Transactions on
Evolutionary Computation, 2024.

[52] Wei Li, Peng Liang, Bo Sun, Yafeng Sun, and Ying Huang. Reinforcement learning-based
particle swarm optimization with neighborhood differential mutation strategy. Swarm and
Evolutionary Computation, 2023.

[53] Jiale Hong, Bo Shen, and Anqi Pan. A reinforcement learning-based neighborhood search
operator for multi-modal optimization and its applications. Expert Systems with Applications,
2024.

[54] Ye Tian, Xiaopeng Li, Haiping Ma, Xingyi Zhang, Kay Chen Tan, and Yaochu Jin. Deep
reinforcement learning based adaptive operator selection for evolutionary multi-objective opti-
mization. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022.

[55] Shuijia Li, Wenyin Gong, Ling Wang, and Qiong Gu. Evolutionary multitasking via rein-
forcement learning. IEEE Transactions on Emerging Topics in Computational Intelligence,
2023.

[56] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 2000.

[57] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable multi-objective
optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No. 02TH8600). IEEE, 2002.

[58] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai Nagaratnam Suganthan, Wudong Liu,
Santosh Tiwari, et al. Multiobjective optimization test instances for the cec 2009 special session
and competition. 2008.

[59] Simon Huband, Philip Hingston, Luigi Barone, and Lyndon While. A review of multiobjec-
tive test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation, 2006.

[60] Xiaodong Li, Ke Tang, Mohammad N Omidvar, Zhenyu Yang, Kai Qin, and Hefei China.
Benchmark functions for the cec 2013 special session and competition on large-scale global
optimization. gene, 2013.

[61] Xiaodong Li, Andries Engelbrecht, and Michael G Epitropakis. Benchmark functions for
cec’2013 special session and competition on niching methods for multimodal function opti-
mization. RMIT University, evolutionary computation and machine learning Group, Australia,
Tech. Rep, 2013.

[62] Bingshui Da, Yew-Soon Ong, Liang Feng, A Kai Qin, Abhishek Gupta, Zexuan Zhu, Chuan-
Kang Ting, Ke Tang, and Xin Yao. Evolutionary multitasking for single-objective continuous
optimization: Benchmark problems, performance metric, and baseline results. arXiv preprint
arXiv:1706.03470, 2017.

[63] Sebastian Pineda Arango, Hadi S Jomaa, Martin Wistuba, and Josif Grabocka. Hpo-b: A
large-scale reproducible benchmark for black-box hpo based on openml. arXiv preprint
arXiv:2106.06257, 2021.

[64] Howook Hwang, Thom Vreven, Joël Janin, and Zhiping Weng. Protein–protein docking
benchmark version 4.0. Proteins: Structure, Function, and Bioinformatics, 2010.

[65] Mhd Ali Shehadeh and Jakub Kudela. Benchmarking global optimization techniques for
unmanned aerial vehicle path planning. arXiv preprint arXiv:2501.14503, 2025.

[66] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner, Marc
Parizeau, and Christian Gagné. Deap: Evolutionary algorithms made easy. The Journal of
Machine Learning Research, 2012.

13

[67] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zenodo,
DOI:10.5281/zenodo.2559634, February 2019. URL https://doi.org/10.5281/zenodo.
2559634.

[68] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su,
Hang Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.
Journal of Machine Learning Research, 2022.

[69] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed
framework for emerging {AI} applications. In 13th USENIX symposium on operating systems
design and implementation (OSDI 18), 2018.

[70] Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adaptation for differential
evolution. In 2013 IEEE Congress on Evolutionary Computation, 2013.

[71] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. Self-adaptive differential evolution
algorithm with population size reduction for single objective bound-constrained optimization:
Algorithm j21. In 2021 IEEE Congress on Evolutionary Computation (CEC), 2021.

[72] Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das, and Brian A
Jalaian. Improving differential evolution through bayesian hyperparameter optimization. In
2021 IEEE Congress on Evolutionary Computation (CEC), 2021.

[73] Di Wu and G Gary Wang. Employing reinforcement learning to enhance particle swarm
optimization methods. Engineering Optimization, 2022.

[74] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter
Rudolph. Exploratory landscape analysis. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, 2011.

[75] Ramses Sala and Ralf Müller. Benchmarking for metaheuristic black-box optimization: per-
spectives and open challenges. In 2020 IEEE Congress on Evolutionary Computation (CEC),
2020.

[76] Manuel López-Ibáñez, Diederick Vermetten, Johann Dreo, and Carola Doerr. Using the
empirical attainment function for analyzing single-objective black-box optimization algorithms.
IEEE Transactions on Evolutionary Computation, 2024.

[77] Sietse Schröder, Mitra Baratchi, and Jan N van Rijn. Overfitting in combined algorithm selection
and hyperparameter optimization. In International Symposium on Intelligent Data Analysis,
2025.

[78] Yue-Jiao Gong, Jing-Jing Li, Yicong Zhou, Yun Li, Henry Shu-Hung Chung, Yu-Hui Shi, and
Jun Zhang. Genetic learning particle swarm optimization. IEEE transactions on cybernetics,
2015.

14

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

	Introduction
	Related Works
	MetaBox-v2
	Unified MetaBBO Interface
	Efficiency Optimization
	Novel Evaluation Metrics

	Benchmarking Study
	Experimental Setup
	Platform's Acceleration Performance (RQ1)
	Generalization Performance Comparisons among Baselines (RQ2)
	Other In-depth Analysis

	Discussion

