
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/382249402

SDDObench: A Benchmark for Streaming Data-Driven Optimization with

Concept Drift

Conference Paper · July 2024

DOI: 10.1145/3638529.3654063

CITATION

1
READS

11

4 authors, including:

Yuanting Zhong

South China University of Technology

3 PUBLICATIONS   2 CITATIONS   

SEE PROFILE

Yue-Jiao Gong

Sun Yat-Sen University

153 PUBLICATIONS   5,447 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yuanting Zhong on 11 October 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/382249402_SDDObench_A_Benchmark_for_Streaming_Data-Driven_Optimization_with_Concept_Drift?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/382249402_SDDObench_A_Benchmark_for_Streaming_Data-Driven_Optimization_with_Concept_Drift?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuanting-Zhong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuanting-Zhong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/South-China-University-of-Technology?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuanting-Zhong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yue-Jiao-Gong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yue-Jiao-Gong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sun_Yat-Sen_University?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yue-Jiao-Gong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuanting-Zhong?enrichId=rgreq-46c10b2d9fe6d87a565ab045370b2d98-XXX&enrichSource=Y292ZXJQYWdlOzM4MjI0OTQwMjtBUzoxMTQzMTI4MTI4MzE0MjIxMkAxNzI4NjM0ODIzMTI4&el=1_x_10&_esc=publicationCoverPdf


SDDObench: A Benchmark for Streaming Data-Driven
Optimization with Concept Drift

Yuan-Ting Zhong, Xin-Can Wang, Yu-Hong Sun, Yue-Jiao Gong*
South China University of Technology

Guangzhou, China
*Corresponding-Author:gongyuejiao@gmail.com

ABSTRACT
In recent years, the data-driven optimization area has seen a shift
in the research focus from static batched data environment to dy-
namic streaming data environment. However, this field is hindered
by the lack of a comprehensive and standardized test suite. To fill
this gap, we introduce SDDObench, the first benchmark tailored for
evaluating and comparing the streaming data-driven evolutionary
algorithms (SDDEAs). SDDObench comprises two sets of objective
functions combinedwith five different types of concept drifts, which
offer the benefit of being inclusive in generating data streams that
mimic various real-world situations, while also facilitating straight-
forward description and analysis. As a proof-of-concept study, four
well-known algorithms are selected to tackle the problems gener-
ated by SDDObench. The experiment results and analysis reveal
ongoing challenges in attaining good performance for streaming
data-driven optimization. Our SDDObench is open-source and ac-
cessible at: https://github.com/LabGong/SDDObench.

CCS CONCEPTS
• Theory of computation→ Evolutionary algorithms; • Infor-
mation systems→Data streams; •Computingmethodologies
→ Machine learning.
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1 INTRODUCTION
There are many real-world optimization problems that are complex
and require a significant cost to evaluate the objective function.
Moreover, a considerable portion of problems work with an objec-
tive function that is agnostic, depending only on a limited amount
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of data for optimization [5, 7–9]. Such problems are known as
data-driven optimization (DDO) [20].

The advancement of Internet technology has led to an increas-
ing number of applications that continuously produce data over
time, commonly known as data streams [1]. In most cases, the data
distribution of a data stream is non-stationary due to changes in
the environment. This leads to the occurrence of what is commonly
referred to as concept drift [1, 22]. In light of DDO, the concept drift
means that the statistical properties of the objective values change
over time in unforeseen ways. This requires specialized techniques
to handle, which can lead to the development of a new research
direction called streaming data-driven optimization (SDDO).

Given the dynamic nature of the objective evaluation, SDDO
exhibits similarity to the field of dynamic optimization (DyO) [24,
25]. It represents the intersection of DDO and DyO. However, in
contrast to the previous two, the challenges presented by data-
driven fashion with concept drift nature in SDDO are considerably
more demanding:

1) It not only needs to find the optimum in the current environment,
but also tracks it continuously as the environment changes while
the previous one becomes less effective. Moreover, the SDDO em-
phasizes that acquiring fresh data can be either passive or require
a significant amount of time. Passive acquisition means that the
algorithm is unable to actively sample new solution-fitness pairs
at specified positions. On the other hand, time-consuming ac-
quisition refers to the inefficient and time-consuming process of
attempting to solve a problem in a new environment without
reusing previous information.

2) Various types of concept drifts occur naturally, which can be
classified as sudden, gradual, or recurring based on the speed and
intensity of the changes [1]. The detection of concept drifts poses
a significant challenge for SDDO due to the inherent constraints
associated with employing approximate surrogate models as
substitutes for actual environments. As a result, if the concept
drifts are not detected effectively, the algorithm’s effectiveness
is reduced when faced with new environments.

3) As the optimization progress continues, more and more data is
accumulated. It is important to study how to effectively manage
and utilize both old and new data. On one hand, using too much
old data can hinder the accuracy and efficiency of learning surro-
gate models for the current environment. On the other hand, not
using enough old data can worsen the problem of data sparsity
in SDDO.

Evolutionary Algorithms (EAs) have demonstrated their effec-
tiveness in DDO by leveraging data to construct surrogate(s) that
subsequently assist the algorithms in optimization, alleviating the
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need for real objective functions evaluations (FEs) [10]. This cat-
egory of algorithms is referred to as Data-Driven EAs (DDEAs).
While numerous DDEAs have emerged, their focus primarily lies
within static DDO. So far, only a few attempts have been made to
address the SDDOwith dynamic environments or concept drifts [14,
17, 23]. In this study, we refer to them as streaming data-driven EAs
(SDDEAs). Nevertheless, these SDDEAs have been evaluated using
different benchmarks. This absence of standardization in selecting
SDDO benchmark problems hinders a cohesive comparison and
analysis of algorithms in the area.

For a comprehensive and accurate evaluation of SDDEAs, it is
crucial to have a suitable and standardized SDDO benchmark. These
benchmark problems should possess specific qualities: they should
be easily describable and analyzable, with adjustable parameters
to accommodate various scenarios. The benchmark should strike a
balance between simplicity for mathematical analysis and complex-
ity to resemble real-world situations. In response to these needs,
we introduce our SDDObench, a benchmark for SDDO, facilitating
researchers to assess SDDEAs conveniently. Specifically, the major
contributions of this paper are summarized as follows:

• We introduce SDDObench, a test suite that consists of two
sets of objective functions in combination with five different
types of concept drifts: no drift, sudden drift, recurrent sudden
drift, recurrent incremental drift, and recurrent incremental
drift with noise. By doing so, we are able to generate data
streams for experimentation. SDDObench is capable of sim-
ulating various intricate real-world scenarios, making it a
comprehensive tool. The known global optima also make it
convenient for researchers to analyze their algorithms.

• Besides introducing a standardized testbed for SDDEAs, our
approach to formulating the problem instances is highly cus-
tomizable. Users have the ability to define parameters that
govern the fitness landscape, the intensity of the drift, and
other factors. These parameters give researchers the abil-
ity to have flexible control of the experimentation, enabling
them to conduct thorough exploration and comparative anal-
ysis of their algorithms.

• As an initial investigation, we evaluated four DDEA/SDDEA
algorithms by the SDDObench developed. The outcomes
of the benchmarking tests not only demonstrate that our
SDDObench provides a good discrimination capability, but
also reveal ongoing challenges in achieving state-of-the-art
performance with existing DDEA/SDDEA algorithms. The
field of SDDO presents a complex and intriguing area that
warrants further investigation.

2 BACKGROUND AND RELATED WORK
2.1 From DDEAs to SDDEAs
The generic framework for DDEAs is depicted in Figure 1a. As in-
troduced in [21], DDEAs process commences with data collection,
followed by the construction of surrogates using these collected
data. These surrogates play a significant role in assisting the evo-
lutionary optimization process (EOP) to effectively locate optimal
solutions. There are two fundamental approaches to acquire data
in DDEAs, namely passive and active. In passive acquisition, data
are available but remain beyond the control of EOP. This implies

Incremenatl

(a) DDEAs

Time

Incremenatl

Incremenatl

Incremenatl

Incremenatl

(b) SDDEAs

Figure 1: The framework of generic DDEAs and SDDEAs

that only off-the-shelf data of the related tasks/applications can be
used during the optimization procedure. While active acquisition
empowers EOP to send decision vectors (𝒙) to actively query ob-
jective value (𝑦). Typically, only a small fixed number or a certain
percentage of decision vectors are sent, constrained by the cost of
FEs. These new sampled data points, referred to as incremental data
added to the dataset, contribute valuable landscape information
and aid in constructing more accurate surrogates [27].

The conceptual framework of SDDEAs is visually presented in
Figure 1b. SDDEAs can be regarded as an expanded version of
DDEAs specifically designed for dynamic environments. In the
current environment, much like DDEAs, SDDEAs also follow three
primary stages in the optimization procedure. However, it is nec-
essary to regularly update the surrogates and other components
in order to adjust to the evolving optimization environments. Un-
der the nature of data stream with concept drift, SDDEAs face
more challenging issues than DDEAs during optimization. First,
the dataset gradually expands over time due to the continuous ar-
rival of new data. SDDEAs must exercise selectivity in utilizing
data. Second, it is crucial to avoid optimizing the current environ-
ment from scratch in a cold start scenario. To address this, existing
SDDEAs employ transfer learning strategy, leveraging information
about the landscape from old environments to aid in optimization
in the current environment [23]. Third, detecting changes in the
environment is crucial for SDDEAs, given that the distribution of
collected data undergoes shifts over time. This dynamic necessitates
the timely update of surrogates with new data. It is noteworthy
that existing algorithms often overlook this aspect, defaulting to
environments that change as new data arrives [14, 17, 23].

2.2 Related Benchmarks
In the existing literature, to evaluate DDEAs, five benchmark prob-
lems are widely used for their different characteristics, ranging from
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unimodal to multimodal, convex to nonconvex and the smooth land-
scape to high oscillatory landscape [15]. Further, SDDEAs undergo
evaluation primarily using moving peak based benchmarks and
other dynamic benchmarks [14, 17, 23, 28]. However, on the one
hand, these benchmarks may not fully embody the unique charac-
teristics and difficulties associated with SDDO. On the other hand,
the algorithms have been assessed using different sets of bench-
marks. Hence, in order to accurately assess the effectiveness of
SDDEAs and emphasize their differences from DDEAs, it is crucial
to develop a comprehensive and standardized test suite.

The dynamic changing optimization environment of SDDO re-
sembles that of the traditional DyO. Hence, we also consider DyO
benchmarks as part of our related work. Over the past three decades,
various benchmarks have been developed for DyO. Initially, there
was a trend of introducing oscillating variations into classical static
problems. For instance, benchmarks like the dynamic traveling
salesman problem [4], dynamic knapsack problem [3] incorporated
changes by oscillating between predefined values over time. Later,
attention shifted towards generating landscapes with a controllable
number of moving peaks, due to their ease of implementation and
high controllability. Benchmark models such as moving peak bench-
mark (MPB) [2] and DF1 [18] design the baseline peak function with
conical peaks, in which the height, weight and the position of the
peaks are randomly changed over time. Similar to them, Gaussian
peaks benchmark (GPB) [6] generates gaussian peaks via gauss-
ian process. Generalized moving peaks benchmark (GMPB) [26]
introduced rotation to the baseline peak function, capable of gen-
erating problem instances whose components have a variety of
properties, ranging from unimodal to multimodal, symmetric to
highly asymmetric, separable to partially separable problems with
ill-conditioned and so on. However, these benchmarks primarily fo-
cused on elaborating the baseline peak function and less on dynamic
changes themselves. Notably, the generalized dynamic benchmark
generator (GDBG) [11] focuses on the dynamic changes by offer-
ing six change types, encompassing small to large step changes,
random and chaotic changes, and recurrent alterations.

However, these existing benchmarks possess certain limitations
to be applied in the context of SDDO. First, these benchmarks
overlook the inherent data variation, specifically the concept drift
that significantly impacts on the distribution of data, while SDDO
primarily focuses on the data. Second, existing benchmarks are
somewhat lacking comprehensiveness, often focusing on specific
aspects such as the landscape or the nature of change. For dynamic
changes, these benchmarks tend to consider the change between
consecutive time points while neglecting the long-term connection
(which is however important in real-world applications). Third, the
benchmarking process is typically tailored only for conventional
DyO algorithms, neglecting the consideration for traditional DDO
approaches. As a result, there would be no correlation between the
testing conducted in DDO environments and SDDO environments,
which is not recommended. In light of these observations, there is
a clear need for the development of a new benchmark specifically
tailored to address the complexity of evaluation for SDDO.
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Figure 2: Initial landscapes of objective function

3 SDDOBENCH
In this section, first the general formulation of problems in SD-
DObench is presented, then the designated set of problems in-
stances with specific parameter settings are given, followed by the
performance measures.

3.1 Problem Definition
In our study, a SDDO problem is defined as:

𝐹 = 𝑓 (𝑔(𝜙, 𝛿 (𝑡))) (1)

Here, 𝐹 represents the optimization problem, structured as a com-
posite function comprising three integral components: 𝑓 acts as
the primary objective function, representing the fundamental static
structure of the problem; 𝛿 (𝑡) is the drift function simulating the
concept drift over time 𝑡 ; and the transformation function 𝑔 serves
as the connection between 𝑓 and 𝛿 (𝑡), with 𝜙 denoting the relative
variable(s) to be changed. Through 𝑔, the static objective function
can be transferred to a function with dynamic characteristics. In-
tegrating the above, Eq. 1 is applied to produce data streams for
SDDO. Further elaboration on each of these three components is
provided subsequently.

3.2 Objective Function
The objective function, which serves as the fundamental framework
of the optimization problem, should possess both controllability
and complexity. To fulfil this purpose, SDDObench accommodates
two distinct sets of functions for the objective formulation.

3.2.1 Multi-Peak Function (𝑓𝑀𝑃𝐹 ): The multi-peak function has
the capability to generate a landscape containing multiple peaks,
each defined by the correlation variables associated with them. This
functionality allows precise control over the number of peaks, their
respective heights, widths and positions.

Specifically, we adopt a peak information structure akin to the
one utilized in MPB [2], but we replace the 𝑚𝑎𝑥 (·) operator by
𝑚𝑖𝑛(·) according to the past convention of objective minimization
in the area of DDO. It is worth mentioning that it might be more
suitable to use the term ’valley’ instead of ’peak’, but we have
decided not to do so in order to ensure consistency in naming the
function as per the related literature. The 𝑓𝑀𝑃𝐹 is defined as follows:

𝑓𝑀𝑃𝐹 (𝑥) = min
𝑖∈{1,...,𝑚}

ℎ𝑖

1 +𝑤𝑖 ∥𝑥 − 𝑐𝑖 ∥2
(2)

where𝑚 is the number of peaks, andℎ𝑖 ,𝑤𝑖 and 𝑐𝑖 signify the height,
width and position respectively, of the 𝑖-th peak in the landscape.
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Figure 3: The five different drift functions

3.2.2 DDEA Common Function (𝑓𝐷𝐶𝐹 ): To align with the estab-
lished norms in the field of DDO, we have incorporated five fre-
quently employed problems for evaluating DDEAs, which we re-
fer to as the DDEA common function (𝑓𝐷𝐶𝐹 ). Further informa-
tion can be found in the supplementary document. These selected
benchmarks encompass a wide spectrum of characteristics, varying
between smooth and high oscillatory, unimodal and multimodal,
convex and non-convex. These characteristics pose considerable
challenges for optimization within the realm of DDEAs when fit-
ness evaluation is extremely limited or even unavailable during the
optimization process of the algorithms.

To provide a more comprehensive understanding of the land-
scapes of these two groups of objective functions, we illustrate two
of them in Figure 2 (detailed landscape information can be found
in the supplementary document).

3.3 Drift Function
Within SDDObench, the introduction of a drift function aims to sim-
ulate concept drift within dynamic environmental changes. Aligned
with the concept type of the data stream [16, 29], an ideal set of
drift functions should embody the following key characteristics:

• Static-Like Drift: One drift function should represent a sce-
nario of no concept drift, mirroring a static environment
where the data distribution remains constant.

• Gradual and Abrupt Drift: Including drift functions that de-
pict gradual and abrupt changes is essential as they represent
the spectrum from subtle to drastic environmental changes.

• Predominantly Recurrent Drift: The majority of the drift
type should be recurrent. Recurrent drifts simulate environ-
ments where there is a connection to previous distributions.
In dynamic environments, information transfer between en-
vironments is crucial. If the data distribution totally shifts
to a new, disconnected environment with no connection to
previous states, a simple restart policy might outperform
other strategies due to the absence of information transfer.

Our proposed functions provide a broad perspective to cover
the above characteristics. While existing dynamic benchmarks fo-
cus primarily on changes between consecutive time points, our

functions encompass a wider range by considering temporal cor-
relations across discrete time points, including changes not only
between the current and previous time points but also across vari-
ous past time points. It is in line with the real-world optimization
problem, such as the traffic flow analysis problem, in which the
data streams tend to recur over a relatively longer timeframe (such
as a day, a week, etc.) [13, 19]. This approach embraces a diverse
array of concept drift contexts, providing a nuanced and detailed
representation of dynamic changes within the benchmark.

The formulation of the drift function 𝛿 (𝑡) : [0,𝑇 ] → [−1, 1]
with five distinct types of changes are described as follows, where 𝑡
represents the discrete time point taking values from 0 to the maxi-
mum change time 𝑇 , and 𝑟𝑎𝑛𝑑 (𝑎, 𝑏) generates a random number
within the range of [𝑎, 𝑏].
(𝐷1) No Drift:

𝛿 (𝑡) = 0 (3)
(𝐷2) Sudden Drift:

𝛿 (𝑡) =
{

𝑟𝑎𝑛𝑑 (−1, 1), if t ∈ 𝛬

𝛿 (𝑡 − 1), otherwise
(4)

Here, 𝛬 =
{
𝑡1, 𝑡2, · · · , 𝑡 |Λ |

}
with each 𝑡𝑖 ∈ 𝑟𝑎𝑛𝑑 (1,𝑇 ) denotes

a set of randomly selected time points to undergo sudden drift.
(𝐷3) Recurrent Sudden Drift:

𝛿 (𝑡) =
{

−0.5, if 𝑡 mod 𝑃 < 0.5𝑃
0.5, otherwise

(5)

In this case, 𝑃 denotes the recurrent period.
(𝐷4) Recurrent Incremental Drift:

𝛿 (𝑡) = 𝑐𝑜𝑠 ( 2𝜋𝑡
𝑃

+ 𝜋

2
) (6)

(𝐷5) Recurrent Incremental Drift with Noise:

𝛿 (𝑡) = (1 − 𝜖) · 𝑐𝑜𝑠 ( 2𝜋𝑡
𝑃

+ 𝜋

2
) + 𝜖 · 𝑟𝑎𝑛𝑑 (−1, 1) (7)

Where 𝜖 accounts for a small magnitude of random noise, and
𝑃 is the same as Eq. 5.

To enable a more visual illustration, all drift functions are de-
picted in Figure 3. Below are more details of them.

• Static-Like Drift: 𝐷1 represents a stable environment with
zero drift value, indicating a consistent and unchanging data
distribution.

• Gradual and Abrupt Drift:𝐷2 to𝐷5 depict drift with different
types and magnitudes of change. Both 𝐷2 and 𝐷3 introduce
abrupt changes,with 𝐷2 exhibiting random and drastic drift
values, potentially preventing recurrence of previous en-
vironments and causing sudden degradation in surrogate
accuracy. 𝐷3 involves sharp, substantial changes with signif-
icant variation in drift values. In contrast, 𝐷4 and 𝐷5 exhibit
incremental changes between close time points. They require
techniques for the detection of gradual changes.

• Predominantly Recurrent Drift:𝐷3,𝐷4 and𝐷5 represent drift
with recurrence. 𝐷3 and 𝐷4 are cyclic, with environments
reappearing predictably after significant periods. While 𝐷5
is an acyclic variant of 𝐷4, incorporating a small magnitude
of random noise, leading to subtle variations in the previous
environment and requiring precise handling.
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Figure 4: The movement of the global optimum through a
2-dimensional subspace over 200 changes of F1: the black
point is the global optimum in the initial environment.

Moreover, to facilitate a comprehensive comparison of these drift
types, we provide an example in F1, illustrating the movement of
the global optimum over time in a two-dimensional space in Figure
4. It is observed that the movement of the global optimum align
with the pattern of concept drift, with a larger step size for the
sudden drifts, and a smaller step size for the incremental drifts. It
can be noticed that the movement returns to the previous location
as the recurrent period is repeated.

3.4 Transformation Function
The transformation function acts as a crucial bridge between the
static objective function (subsection 3.2) and the drift function
(subsection 3.3). It facilitates the evolution of the static objective
function over time by variably adjusting the relative variables and
drift values in a linear or non-linear manner. This design is able
to well harmonize benchmarks with those in static environments.
The formulation of the transformation function is as follows:

𝑔(𝜙, 𝛿 (𝑡)) = (𝜙 + 𝜆𝛿 (𝑡)) · R(𝑡 ) (8)

Here, 𝜙 represents the relative variables undergoing change, while
𝜆 denotes the scale factor, defined as

𝜆 = I𝜙 · (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛) (9)

where 𝜙max and 𝜙min signify the maximum and minimum values
of 𝜙 respectively, and I𝜙 represents the parameter of changing
intensity for 𝜙 . The rotation matrix R(𝑡 ) is defined as [11]:

R(𝑡 ) = (R1,2,R3,4, · · · ,R𝑛−1,𝑛) (10)

where 𝑑 is the dimension of 𝜙 . If 𝑑 is odd, then 𝑛 = 𝑑 − 1, otherwise
𝑛 = 𝑑 . Specifically, when 𝑑 = 1, R = 1. When 𝑑 > 1, R𝑙,𝑙+1 is defined
as

R𝑙,𝑙+1 =
(
𝑐𝑜𝑠𝜃 (𝑡 ) −𝑠𝑖𝑛𝜃 (𝑡 )
𝑠𝑖𝑛𝜃 (𝑡 ) 𝑐𝑜𝑠𝜃 (𝑡 )

)
(11)

where 𝜃 (𝑡 ) = 4 · 𝑎𝑟𝑐𝑠𝑖𝑛(𝛿 (𝑡)2).
To summarize, the transformation process involves shifting the

variables by 𝜆𝛿 (𝑡), followed by post-multiplicationwith the rotation
matrix R(𝑡 ) which is also determined by 𝛿 (𝑡).

3.5 Parameter Setting and Benchmark Instances
In SDDObench, we offer eight benchmark instances, the details are
presented in Table 1. The first three instances, denotes as F1-F3,
illustrate varying aspects on changing the peaks in MPF. Specif-
ically, F1 represents a general MPF with fixed number of peaks,
but their heights, widths and positions vary over time. F2 exhibits
similarities to F1, however, it differs in that only a specific portion
𝑟𝑐 of the peaks undergoes variation. This selective alteration of
peak features, determined by a change rate parameter 𝑟𝑐 , presents
greater difficulties in detecting changes as only certain parts of
the environment experience modifications. In F3, the number of
peaks undergoes changes as time progresses. This situation poses
an additional difficulty for the search of SDDEAs, as the newly
emerged peaks require immediate identification efforts over time.
Instances F4 to F8 maintain identical objective functions to the
DDO evaluation literature, but introduce new characteristics via
our shift and transformation functions for streaming data. Solving
these instances are very difficult due to the limited budget for FEs
in the context of SDDO, particularly when taking into account the
concept drift concerns.

Finally, it is important to note that, while we have implemented a
standardized testbed, the configuration of problem instances can be
modified. SDDObench users have the option to redefine parameters
in order to customize their experiments, allowing for comprehen-
sive exploration and comparative analysis of their algorithms.

3.6 Performance Measures
Within SDDObench, we assess the performance of SDDEAs using
two widely-used and effective performance measures [12, 14, 25].
They illustrate the convergence behavior of SDDEAs in terms of
error: the smaller the values, the better the algorithm performance.
1) Online Error (𝐸online): It considers the error at the current envi-

ronment.

𝐸
(𝑡 )
online =

1
𝐼

𝐼∑︁
𝑖=1

[
𝑓 (𝑥∗(𝑖,𝑡 ) ) − 𝑓 (𝑥★(𝑡 ) )

]
(12)

where 𝐼 is the iterative frequency between environments, 𝑥∗(𝑖,𝑡 )
is the best found solution after 𝑖-th iteration at the current 𝑡-th
environment, and 𝑥★(𝑡 ) is the global optimal solution at the 𝑡-th
environment.

2) Offline Error (𝐸offline): It computes the average error between
the best-found solution and the global optimal solution across
iterations. For active SDDEAs, the 𝐸offline is calculated over FEs,
while for passive SDDEAs, it is computed over iterative genera-
tions using the formula [23]:

𝐸offline =
1
𝑇 𝐼

𝑇∑︁
𝑡=1

𝐼∑︁
𝑖=1

[
𝑓 (𝑥∗( (𝑡−1)𝐼+𝑖 ) ) − 𝑓 (𝑥★(𝑡 ) )

]
(13)

where𝑇 is the total number of environments (same as maximum
change time), 𝑥∗( (𝑡−1)𝐼+𝑖 ) is the best found solution at the 𝑖-th
iterative evaluation in the 𝑡-th environment, 𝑥★(𝑡 ) and 𝐼 are
same as the Eq. 12.

4 EXPERIMENTAL STUDIES
In this section, we conduct a preliminary study by testing and
comparing representative SDDEAs on the SDDObench.
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Table 1: The benchmark instances

Ins. Objective Function Transformation Function Variables Range (𝜙) Optimum Parameters Setting

F1 𝑓𝑀𝑃𝐹

𝑥 (𝑡 ) = 𝑥 (𝑡0 )

for 𝑝𝑒𝑎𝑘𝑖 ,
ℎ
(𝑡 )
𝑖

= 𝑔(ℎ (𝑡0 )
𝑖

, 𝛿 (𝑡))
𝑤

(𝑡 )
𝑖

= 𝑔(𝑤 (𝑡0 )
𝑖

, 𝛿 (𝑡))
𝑐
(𝑡 )
𝑖

= 𝑔(𝑐 (𝑡0 )
𝑖

, 𝛿 (𝑡))

ℎ ∈ [−70,−30]
𝑤 ∈ [1, 12]
𝑐 ∈ [−5, 5]𝑑
𝑥 ∈ [−5, 5]𝑑
𝑚 (𝑡0 ) = 8

𝑚
min
𝑗

ℎ 𝑗

intensities: Iℎ = 0.3,
I𝑤 = 0.1, I𝑐 = 0.4,
I𝑥 = 0.4, I𝑚 = 0.5
offset: 𝜖 = 0.3

sudden number: |𝛬 | = 5
change rate: 𝑟𝑐 = 0.5

recurrent period: 𝑃 = 20
F2 𝑓𝑀𝑃𝐹

randomly select [𝑟𝑐 ·𝑚] peaks,
if 𝑝𝑒𝑎𝑘𝑖 is selected, as F1,
otherwise,
ℎ
(𝑡 )
𝑖

,𝑤
(𝑡 )
𝑖

, 𝑐
(𝑡 )
𝑖

= ℎ
(𝑡−1)
𝑖

,𝑤
(𝑡−1)
𝑖

, 𝑐
(𝑡−1)
𝑖

as F1

F3 𝑓𝑀𝑃𝐹
as F1, and
𝑚 (𝑡 ) = 𝑔(𝑚 (𝑡0 ) , 𝛿 (𝑡))

as F1, and
𝑚 ∈ [3, 40]

F4 𝑓𝐷𝐶𝐹 : Sphere 𝑥 (𝑡 ) = 𝑔(𝑥 (𝑡0 ) , 𝛿 (𝑡)) 𝑥 ∈ [−5.12, 5.12]𝑑

0
F5 𝑓𝐷𝐶𝐹 : Rosenbrock as F4 𝑥 ∈ [−2.048, 2.048]𝑑
F6 𝑓𝐷𝐶𝐹 : Ackley as F4 𝑥 ∈ [−32.768, 32.768]𝑑
F7 𝑓𝐷𝐶𝐹 : Griewank as F4 𝑥 ∈ [−600, 600]𝑑
F8 𝑓𝐷𝐶𝐹 : Rastrigin as F4 𝑥 ∈ [−5.12, 5.12]𝑑

4.1 Experiment Design
4.1.1 Benchmark Test Algorithms. To investigate the effect of SD-
DObench, four algorithms have been chosen for the study: TT-
DDEA [9], DSE-MFS [23], SAEF-1GP [17], and DETO [14]. A sum-
mary of the details for each algorithm is provided in Table 2. Among

Table 2: The benchmark algorithms

designed with
concept drift data acquisition

TT-DDEA × passive
DSE-MFS ✓ passive
SAEF-1GP ✓ active
DETO ✓ active

these benchmark algorithms, TT-DDEA utilizes a tri-training ap-
proach to update surrogate models. In each generation, it selects
three candidate solutions with highly reliable predictions, which
serve as true samples to fine-tune the models. This methodology is
tailored for static DDO. DSE-MFS employs ensemble learning by
assigning weights to historical environment data, constructing sur-
rogates, and subsequently combining them to support a multi-task
EA in optimizing current environment problem. As for SAEF, we
choose its 1S_GP variant for its outstanding performance, referred
to as SAEF-1GP, which incorporates memory mechanism and en-
vironment change detection strategy. This approach constructs a
Gaussian model for each new environment, integrating a memory-
based strategy that stores the excellent solutions, then alongside
particle swarm optimization to effectively track evolving optima.
DETO leverages clustering techniques and a warm start mechanism
utilizing historical data to rebuild a multi-output Gaussian process,
which has the input of time-associated data. Subsequently, it assists
the EAs for effectively searching in the new environment.

4.1.2 Experiment Settings. To uphold the validity and fairness of
our experiments, we have established the following experiment
settings:

• The total number of environments 𝑇 in every independent
run is set to 60.

• The algorithms iterate 𝐼 = 30 generations in each environ-
ment.

• Upon each environment, a data set of size 5𝑑 is generated
using Latin hypercube sampling (LHS) [4]. In the case of
active SDDEAs, an extra 30 active FEs (in each environment)
are permitted 1.

• Other parameters remain consistent with those outlined in
the original literature to ensure optimal performance.

Following 20 independent runs, we present the average and stan-
dard deviation of the performance metrics for comparison. The code
used for comparison is implemented as per the original authors’
specifications.

4.2 Performance Investigate of Test Algorithms
4.2.1 Comparison Among Different Concept Drifts: In this part, the
performance discrepancy analysis across various drift scenarios
is presented. The convergent trajectories of DETO are depicted in
Figure 5 for visual illustration. As expected, the absence of any drift
(𝐷1) shows the best performance. Then, from Figure 5a, it can be
found that when sudden drift (𝐷2 and 𝐷3) occurred, the landscape
of the search space changed drastically, transforming far from the
old pattern, resulting in the performance degradation for the algo-
rithm. In general, in contrast to in recurrent drift scenarios (𝐷3),
the algorithms showcase worse performance in non-recurrent drift
scenario (𝐷2). Further, as can clearly seen in Figure 5b, under re-
current drift scenarios (𝐷3, 𝐷4 and 𝐷5), the landscape of the search
1Generally, it is not fair to compare active and passive SDDEAs, as the active ones
are anticipated to achieve better performance. Nevertheless, for the sake of space
efficiency, we have condensed the results in this paper.
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Figure 5: The 𝐸online convergent trajectories of DETO on the first 40 environments (two recurrent periods) of instance F7.
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Figure 6: The 𝐸online convergent trajectories on the first 40
environments (two recurrent periods) of instance F1

space consistently display recurring change patterns. However, in
acyclic drift scenarios (𝐷5), the changes become no longer regular
by adding a small magnitude of randomness. In this case, employ-
ing memory and warm start strategies yields less effective results
compared to those in the ideal recurrent drift (𝐷4).

The above can show the rationality, comprehensiveness, and
complexity of our five concept drifts, which have diverse properties
and bring different problem characteristics to the SDDObench.

4.2.2 Comparison Among Different Algorithms: The performance
disparities among algorithms across different instances are evident
in the results shown in the following. For the two passive algo-
rithms, as shown in Table 3, DSE-MFS outperforms TT-DDEA on
F1-F3, but exhibits lower performance on F4-F8. Notably, TT-DDEA
lacks strategies for dynamic environments but demonstrates more
effective search capabilities. The static objective functions for F1-F3
and F4-F8 come from the MPF and DCF problem sets, respectively.
It is worth noting that DCF displays greater search complexity than
MPF due to its intricate characteristics. It appears that DSE-MFS
has limitations in addressing such complex problems. For the ac-
tive algorithms, the different performance of DETO and SAEF-1GP
is also evident. In general, DETO demonstrates notably superior
performance than SAEF-1GP.

Furthermore, designing a strategy to discern and manage the
environment changes remains a significant hurdle in improving the
SDDO performance. Seen in Figure 6, all four algorithms are subject
to dramatic fluctuations in results due to concept drift from the data
streams, even under the concept drift scenarios of small change in
magnitude (𝐷4 and 𝐷5). This implies that the algorithms currently
in use still lack an efficient method for detecting changes in the
environment and utilizing information from previous environments
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Table 3: Comparison of the 𝐸offline among test algorithms: mean(standard deviation) results, with the superior algorithm
highlighted in bold, using Wilcoxon rank-sum test (significance level 𝛼 = 0.05)

Drift Algorithm Instances
F1 F2 F3 F4 F5 F6 F7 F8

𝐷1

TT-DDEA 66.5(0.175) 66.2(0.518) 66.4(0.605) 0.593(0.0298) 20.7(2.71) 7.96(0.649) 0.889(0.0811) 41.7(5.04)
DSE-MFS 51.4(0.359) 52.2(0.602) 50.9(0.595) 4.61(0.462) 110(35.6) 17.4(3.34) 11.1(0.927) 59.8(1.84)
SAEF-1GP 51.3(0.282) 50.5(0.284) 48.1(0.288) 10.2(0.52) 320(41.7) 17.8(0.145) 36.1(1.67) 55.4(0.957)
DETO 26.1(0.802) 27.3(0.841) 25.1(0.421) 2.61(0.221) 270(8.01) 8.64(0.259) 0.308(0.0174) 42.4(0.632)

𝐷2

TT-DDEA 65.2(0.0991) 65.7(0.361) 64.6(0.221) 9.87(0.736) 294(32.6) 13.6(0.138) 0.911(0.0169) 62.9(1.42)
DSE-MFS 47.4(0.477) 48.5(0.636) 49.9(0.403) 15(7.17) 484(13) 19.7(1.3) 39.7(2.07) 65.1(1.93)
SAEF-1GP 51.8(0.289) 51.9(0.425) 48.4(0.32) 11.7(0.655) 365(22.8) 18.1(0.194) 41.4(2.37) 57.5(1.04)
DETO 29(0.789) 30.9(1.06) 27.9(0.533) 3.62(0.142) 279(37.3) 9.5(0.468) 0.333(0.0168) 44.3(0.816)

𝐷3

TT-DDEA 64.2(0.125) 65.3(0.667) 62.5(0.189) 13(0.411) 337(21.5) 18.5(0.137) 0.998(0.0102) 65.9(0.828)
DSE-MFS 51.2(1.54) 52.1(0.457) 49.1(1.22) 21.4(8.49) 755(19.5) 20.1(0.817) 59(17.6) 69.2(1.94)
SAEF-1GP 53.3(0.218) 53.5(0.285) 48.6(0.354) 11.4(0.599) 337(2.79) 17.9(0.192) 40.2(2.01) 57(1.18)
DETO 28.9(0.787) 28.8(1.2) 25(0.966) 4.75(0.474) 340(5.14) 9.51(0.553) 0.315(0.0305) 45.5(4.13)

𝐷4

TT-DDEA 61.5(1.36) 63.5(0.891) 61.9(0.287) 15.4(4.05) 559(14.7) 16.8(1.2) 0.985(0.024) 65.5(3.07)
DSE-MFS 52.4(0.782) 53.3(0.695) 50.9(0.526) 22.5(4.01) 872(11.4) 18.2(0.272) 74.9(11.2) 79.2(3.28)
SAEF-1GP 51.4(0.288) 50.7(0.227) 48.3(0.155) 13.8(0.61) 374(37.3) 18.5(0.161) 48.7(2.11) 59.2(1.3)
DETO 25.9(0.519) 28.9(0.886) 24.4(0.868) 4.42(0.137) 271(2.52) 11.3(0.061) 0.379(0.0214) 44.3(3.63)

𝐷5

TT-DDEA 62.3(1.95) 64.6(0.266) 62.4(0.297) 13.5(3.1) 352(80) 17(0.441) 0.986(0.0172) 62.4(3.42)
DSE-MFS 53.3(0.131) 53.7(0.297) 50.7(0.748) 15.3(1.61) 554(12.8) 17.1(0.386) 51.6(5.21) 70.8(1.32)
SAEF-1GP 51.6(0.222) 50.9(0.177) 48.8(0.126) 12.8(0.777) 401(39) 18.5(0.129) 45.1(2.76) 57.7(1.08)
DETO 28.7(0.717) 29.9(1.79) 26.4(0.385) 3.37(0.315) 272(2.15) 10.1(0.127) 0.332(0.0201) 44.7(0.36)

to handle the complexity and variability of concept drift. The area
of SDDO and SDDEAs deserves further exploration.

5 SUMMARY
This paper introduces SDDObench, a comprehensive benchmark de-
signed specifically for SDDO, which can serve as a unified test suite
for evaluating SDDEAs. Within the framework of SDDObench, two
sets of baseline objective functions and five types of drift functions
are connected through the transformation function. The objective
functions offer a comprehensive representation, incorporating the
benchmark functions previously used in both DyO and DDO.When
considering the streaming data environment, where concept drift
is a crucial consideration, five distinct drift functions have been
introduced, namely no drift, sudden drift, recurrent sudden drift, re-
current incremental drift and recurrent incremental drift with noise.
These drift functions are designed to comprehensively simulate
different realistic scenarios. Additionally, instead of solely relying
on randomly shifting parameters, rotation changes are also incor-
porated into the transformation function. The rotation provides
more complex properties, including asymmetry and nonseparabil-
ity, to the variation of problem landscapes. The combination of
these three main components results in the creation of eight bench-
mark instances. These instances are carefully designed to balance
the controllability and complexity for SDDO.

To evaluate SDDObench, experiments were conducted using
four algorithms across the eight benchmark instances. The exper-
imental results validate the rationality, comprehensiveness, and
good descriminability of SDDObench. However, they also reveal
that existing algorithms still face challenges in effectively solving
these benchmark instances:

• Data management strategy: In SDDO, data arrive continu-
ously, with the existence of distribution drift. Hence, how to
effectively manage and utilize old and new data becomes a
crucial issue that influences both the efficacy and efficiency
of SDDEAs.

• Change detection strategy: The experiments suggest that
a change detection strategy is necessary under certain sce-
narios. Most existing SDDEAs assume that the environment
has changed with the arrival of new data. However, this as-
sumption may not hold true in many real-world applications.
Effectively detecting different types of concept drifts poses
a significant challenge to current studies.

• Warm start strategy: Simply reusing surrogates and/or solu-
tions from the previous environment may not be beneficial
for optimization in the current environment, especially in
cases where the data distribution exhibits long-term connec-
tion, and the cases where the drifts are recurrent but feature
randomness. It is highly desired to develop effective memory
mechanisms and warm start strategy to handle the issue.

As an important area of practical value, SDDO is still in its infancy,
underscoring the need for further exploration.
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