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Abstract—In this survey, we introduce Meta-Black-Box-
Optimization (MetaBBO) as an emerging avenue within the
Evolutionary Computation (EC) community, which incorporates
Meta-learning approaches to assist automated algorithm design.
Despite the success of MetaBBO, the current literature provides
insufficient summaries of its key aspects and lacks practical
guidance for implementation. To bridge this gap, we offer a
comprehensive review of recent advances in MetaBBO, providing
an in-depth examination of its key developments. We begin
with a unified definition of the MetaBBO paradigm, followed
by a systematic taxonomy of various algorithm design tasks,
including algorithm selection, algorithm configuration, solution
manipulation, and algorithm generation. Further, we conceptu-
ally summarize different learning methodologies behind current
MetaBBO works, including reinforcement learning, supervised
learning, neuroevolution, and in-context learning with Large
Language Models. A comprehensive evaluation of the latest
representative MetaBBO methods is then carried out, alongside
an experimental analysis of their optimization performance,
computational efficiency, and generalization ability. Based on the
evaluation results, we meticulously identify a set of core designs
that enhance the generalization and learning effectiveness of
MetaBBO. Finally, we outline the vision for the field by providing
insight into the latest trends and potential future directions.
Relevant literature will be continuously collected and updated
at https://github.com/MetaEvo/Awesome-MetaBBO.

Index Terms—Meta-Black-Box-Optimization, Evolutionary
Computation, Black-Box-Optimization, Learning to Optimize.

I. INTRODUCTION

Optimization techniques have been central to research for
decades [1], [2], with methods applied across engineering [3],
economics [4], and science [5]. The optimization problems
can be classified into White-Box [6] and Black-Box [7]
types. White-Box problems, with transparent structures, allow
efficient optimization using gradient-based algorithms like
SGD [8], Adam [9], and BFGS [10]. In contrast, Black-
Box Optimization (BBO) only provides objective values for
solutions, making the analysis and search of the problem space
even more challenging.
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Evolutionary Computation (EC), including Evolutionary Al-
gorithms (EAs) and Swarm Intelligence (SI), is widely recog-
nized as an effective gradient-free approach for solving BBO
problems [11]. Over the past decades, EC methods have been
extensively applied to various optimization challenges [12]–
[16], due to their simplicity and versatility. Though effective
for solving BBO problems, traditional EC is constrained by
the no-free-lunch theorem [17], which asserts that no opti-
mization algorithm can universally outperform others across
all problem types, leading to performance trade-offs depending
on the problem’s characteristics. In response, various human-
crafted methods have been developed including offline hyper-
parameter optimization [18]–[20], hyper-heuristics [21]–[23]
and (self-)adaptive EC variants [24]–[31]. However, they face
several limitations. 1) Limited generalization: these methods
often focus on a specific set of problems, limiting their
generalization due to customized designs. 2) Labor-intensive:
designing adaptive mechanisms requires both deep knowledge
of EC domain and the target optimization problem, making
it a complex task. 3) Additional parameters: many adaptive
mechanisms introduce extra hyper-parameters, which can sig-
nificantly impact performance. 4) Sub-optimal performance:
despite increased efforts, design biases and delays in reactive
adjustments often lead to sub-optimal outcomes.

Given this, a natural question arises: can we automatically
design effective BBO algorithms while minimizing the depen-
dence on expert input? A recently emerging research topic,
known as Meta-Black-Box-Optimization (MetaBBO) [32], has
shown possibility of leveraging the generalization strength of
Meta-learning [33] to enhance the optimization performance
of BBO algorithms in the minimal expertise cost. MetaBBO
follows a bi-level paradigm: the meta level typically maintains
a policy that takes the low-level optimization information as
input and then automatically dictates desired algorithm design
for the low-level BBO optimizer. The low-level BBO process
evaluates the suggested algorithm design and returns a feed-
back signal to the meta-level policy regarding the performance
gain. The meta-objective of MetaBBO is to meta-learn a policy
that maximizes the performance of the low-level BBO process,
over a problem distribution. Once the training completes, the
learned meta-level policy can be directly applied to address
unseen optimization problems, hence reducing the need for
expert knowledge to adapt BBO algorithms.

Numerous valuable ideas have been proposed and dis-
cussed in existing MetaBBO research. From the perspective
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The content structure of this paper

Section 2: Formal 
Definition of MetaBBO
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Level Learning Paradigms

Section 6: 
Key Design Strategies
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Training Distribution Design 
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Fig. 1. Roadmap of the content structure, beginning with a concept introduction, followed by a review of existing methods across different taxonomies, a
evaluation of selected methods, and a summary of key design strategies and future vision.

of algorithm design tasks (meta tasks) that the meta-level
policy can address, those MetaBBO works can be cate-
gorized into four branches: 1) Algorithm Selection, where
for solving the given problem, a proper BBO algorithm
is selected by the meta-level policy from a pre-collected
optimizer/operator pool. 2) Algorithm Configuration, where
the hyper-parameters and/or operators of a BBO algorithm
are adjusted by the meta-level policy to adapt for the given
problem. 3) Solution Manipulation, where the meta-level
policy is trained to act as a BBO algorithm to manipulate
and evolve solutions. 4) Algorithm Generation, where each
algorithmic component and the overall workflow are generated
by the meta-level policy as a novel BBO algorithm. From
the perspective of learning paradigms adopted for training
the meta-level policy, different learning methods such as rein-
forcement learning (MetaBBO-RL) [34]–[40], auto-regressive
supervised learning (MetaBBO-SL) [41]–[46], neuroevolu-
tion (MetaBBO-NE) [47]–[49], and Large Language Mod-
els (LLMs)-based in-context learning (MetaBBO-ICL) [43],
[50]–[53] have been investigated in existing works. From
the perspective of low-level BBO process, MetaBBO has
been instantiated to various optimization scenarios such as
single-objective optimization [37], [38], [40], multi-objective
optimization [54], [55], multi-modal optimization [56], large
scale global optimization [46], [48], [49], and multi-task opti-
mization [57], [58]. Such an intricate combination of algorithm
design tasks, learning paradigms, and low-level BBO scenarios
makes it challenging for new practitioners to systematically
learn, use, and develop MetaBBO methods. Unfortunately,
there is still a lack of a comprehensive survey and practical
guide to the advancements in MetaBBO.

While some related surveys discussed the integration of
learning systems into EC algorithm designs, they have several
limitations: 1) Previous surveys [59]–[61] focus on one or two
algorithm design tasks, such as algorithm configuration [61]
and algorithm generation [59], [60]. These surveys therefore
show short in providing comprehensive review and comparison
analysis on all four design tasks. 2) Some surveys [62]–
[65] focus on a particular learning paradigm - RL [66].
However, in MetaBBO, various learning paradigms can be
adopted, each with distinct characteristics. 3) In addition to
reviewing relevant papers, existing surveys lack a practical
guide that provides a comprehensive experimental evaluation

Low-level BBO Process

Meta-level Algorithm Design Task

Low-level Optimizer

Optimization Problem 
Distribution

optimize

Optimization 
State Feature

Algorithm
Design

Meta-objective

accumulate

meta-train

input output

Fig. 2. A conceptual overview of the bi-level learning framework of
MetaBBO, illustrating the interactions between its core components to clarify
the overall workflow.

of MetaBBO methods and a summary of key design strategies,
falling short in offering in-depth evaluations or actionable
insights for implementing MetaBBO methods.

To address the gaps in previous surveys, this paper pro-
vides a more comprehensive coverage of the MetaBBO field.
Fig. 1 offers a roadmap to help readers quickly navigate the
overall content structure. We first provide a formal definition
of MetaBBO in Section II. Subsequently, we identify four
main algorithm design tasks in existing MetaBBO works and
their working scenarios in Section III. In Section IV, we
further elaborate four learning paradigms, with easy-to-follow
technical details. Section V provides a proof-of-principle per-
formance evaluation on ten representative MetaBBO methods.
According to the evaluation results, Section VI provides in-
depth discussion about the key design strategies in MetaBBO.
Finally, we outline the vision for the MetaBBO field in
Section VII. The contributions of this survey are generally
summarized as follows:

• The first comprehensive survey that sorts out existing
literature on MetaBBO. We provide a clear categorization
of existing MetaBBO works according to four distinct
meta-level tasks, along with a detailed elaboration of four
different learning paradigms behind.

• A proof-of-principle evaluation is conducted to provide
practical comparison between MetaBBO works, lead-
ing to an in-depth discussion over several key design
strategies related to the learning effectiveness, training
efficiency, and generalization.
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• In the end of this paper, we mark several interesting and
promising future research directions of MetaBBO, focus-
ing different aspects such as the generalization potential,
the end-to-end workflow, and the integration of LLMs.

II. DEFINITION OF METABBO

Meta-Black-Box-Optimization (MetaBBO) [32] is derived
from the Meta-learning paradigm [33], [67]. One of the roots
of meta-learning could date back to 1987, where Schmidhu-
ber [68] used Genetic Programming (GP) as a learning method
to learn better GP program in a self-referential way. Meta-
learning is applicable to the learning of both models and
algorithms [44]. For example, in [69], a prior knowledge-
assisted learning method was proposed to learn synaptic
learning rule that is adaptable for diverse downstream learning
tasks. In [70], a novel Recurrent Neural Network (RNN)
model architecture is meta-learned and subsequently used as
a classifier. In contrast, in [71], a RNN model is meta-
learned to serve as a gradient descent algorithm for optimizing
other neural networks. The paradigm in [71] quickly becomes
popular and the following works explore the possibility of
such a paradigm in various white-box optimization scenarios
ranging from first-order optimization [71] to combinatorial op-
timization [72]. To make a distinction with other applications
of Learning to Learn, this research line is named by Learning
to Optimize (L2O). MetaBBO draws key inspiration from
the L2O, while targeting black-box optimization scenarios. In
this section, we provide an overview of the abstract work-
flow shared by existing MetaBBO methods, explaining the
motivation of the core components in MetaBBO. MetaBBO
operates within a bi-level framework, as depicted in Fig. 2,
and is detailed as follows.

We begin with the low-level BBO process. A key com-
ponent at this level is the low-level optimizer A. A repre-
sents a flexible concept, capable of being any off-the-shelf
EC algorithm, its modern variants, an algorithm pool, or a
structure for creating new algorithms (rather than a specific
existing one). Another crucial element is the optimization
problem distribution P , representing a collection of optimiza-
tion problem instances to be solved. Although the size of P
could theoretically be infinite, facilitating Meta-learning on
an infinite problem set is impossible. In practice, we instead
sample a collection of N instances {f1, f2, ..., fN} from P as
the training set. A meta task T aims to automatically dictate
an algorithm design ω ∈ Ω for the low-level optimizer A for
each problem instance in P , where Ω denotes the algorithm
design space of A. For instance, in a basic DE optimizer [73],
its algorithm configuration (e.g., values of the two hyper-
parameters F and Cr that control the mutation and crossover
strength) can be regarded as an algorithm design space Ω.
There are various algorithm design spaces, which are discussed
in detail in Section III. MetaBBO solves the meta task by
learning a meta-level policy πθ for the algorithm decision.

Formally, for a meta-level algorithm design task T :=

{P,A,Ω}, πθ is trained to maximize the meta-objective J(θ):

J(θ) = Ef∈P [R (A, πθ, f)] ≈
1

N

N∑
i=1

T∑
t=1

perf(A, ωt
i , fi)

ωt
i = πθ(s

t
i), sti = sf(A, fi, t) (1)

where sf(·) is a state feature extraction function, which cap-
tures the optimization state information from the interplay
between the optimizer A and the problem instance fi. The
meta-level policy πθ is parameterized by learnable parameters
θ. It receives sti as input and outputs an algorithm design
ωt
i , which is then adopted by A to optimize fi. A perfor-

mance measurement function perf(·) is used to evaluate the
performance gain obtained by this algorithm design decision.
R(·) is accumulated performance gain during the low-level
optimization of a problem instance. We approximate the meta-
objective J(θ) as the average performance gain across a group
of N problem instances sampled from P , over a certain
number T of optimization steps. To summarize, MetaBBO
aims to search for an optimal meta-level policy πθ∗ which
maximizes the meta-objective J(θ).

MetaBBO vs. Hyper-Heuristics (HH): It is worthy to note
that MetaBBO closely aligns with the Hyper-Heuristics (HH)
paradigm introduced by Peter et al. [21] through their
shared a bi-level framework for AAD tasks. Below we
present two key distinctions to clarify the unique position of
MetaBBO: 1) Problem Scope and Task Innovation: HH aims
to select/generate heuristics within combinatorial optimiza-
tion (COPs) [74], [75], while MetaBBO exclusively targets
automating ‘BBO’ algorithm design. Because of its special-
ized focus, MetaBBO actively samples and models problem
landscapes to learn latent optimization dynamics, thereby
enabling novel AAD tasks like dynamic algorithm config-
uration and generation, which remain largely unexplored in
HH research [76] due to its rigid heuristic-driven framework.
2) Learning Flexibility: Consider the meta-level method, HH
primarily relies on meta-heuristics, while MetaBBO integrates
diverse ML approaches (reinforcement learning, neuroevolu-
tion, supervised learning and in-context learning with LLMs).
MetaBBO’s neural network-based policies enable online adap-
tation across problem classes, while HH typically operates
offline within a fixed domain. Specifically, the neural controller
of MetaBBO actively interrogates problem characteristics to
synthesize algorithm specifically for the current problem land-
scape, which enables on-instance adjustment as well as cross-
problem generalization.

III. CATEGORIZATION OF METABBO BY META TASKS

We introduce four common meta-level tasks in MetaBBO:
Algorithm Selection in Section III-A, Algorithm Configuration
in Section III-B, Solution Manipulation in Section III-C and
Algorithm Generation in Section III-D. Generally speaking,
they are organized by the size of design space, from smallest
to largest. Algorithm selection deals with a small space,
choosing from a few BBO optimizers, while algorithm gen-
eration explores a vast space, allowing the meta-level policy
to create novel BBO optimizers in an open-ended manner.
Table I presents a selection of works categorized by the meta
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TABLE I
REPRESENTATIVE WORKS IN METABBO, CATEGORIZED BY DIFFERENT ALGORITHM DESIGN TASKS. WE HAVE PROVIDED AN ONLINE PAGE, WHERE

MORE DETAILS OF EXISTING METABBO WORKS ARE INCLUDED.

Algorithm Year Low-level
Optimizer

Optimization
Type Technical Summary

A
lg

or
ith

m
Se

le
ct

io
n

Meta-QAP [77] 2008 MMAS CO per-instance algorithm selection by MLP classifier for Quadratic Assignment Problem (QAP)
Meta-TSP [78] 2011 GA CO per-instance algorithm selection by MLP classifier for Travelling Salesman Problem (TSP)
Meta-MOP [79] 2019 MOEA MOOP per-instance algorithm selection by SVM classifier from ten multi-objective optimizers
Meta-VRP [80] 2019 MOEA CO per-instance algorithm selection by MLP classifier from four multi-objective optimizers

AR-BB [81] 2020 EAs, SI SOP per-instance algorithm selection by symbolic problem representation and LSTM autoregressive prediction
ASF-ALLFV [82] 2022 EAs, SI SOP per-instance algorithm selection by adaptive local landscape feature and KNN classifier

AS-LLM [83] 2024 - SOP per-instance algorithm selection leverage embedding layer in LLMs
HHRL-MAR [84] 2024 SI SOP dynamically switch SI optimizers along the optimization process with a Q-table RL agent
R2-RLMOEA [54] 2024 EAs MOOP dynamically switch 5 EA optimizers along the optimization process with an MLP RL agent

RL-DAS [40] 2024 DE SOP dynamically switch 3 DE optimizers along the optimization process with an MLP RL agent
TransOptAS [85] 2024 EAs, SI SOP per-instance algorithm selection by Transformer performance predictor from single-objective optimizers

A
lg

or
ith

m
C

on
fig

ur
at

io
n

RLMPSO [86] 2016 PSO SOP dynamically select PSO update rules
RL-MOEA/D [87] 2018 MOEA/D MOOP dynamically control the neighborhood size and the mutation operators used in MOEA/D

QL-(S)M-OPSO [88] 2019 PSO SOP,MOOP dynamically control the parameters of PSO update rule
DE-DDQN [34] 2019 DE SOP mutation operator selection in DE
DE-RLFR [89] 2019 DE MMOOP mutation operator selection in DE for multi-modal multi-objective problems

LTO [90] 2020 CMA-ES SOP dynamically configure the mutation step-size in CMA-ES
QLPSO [36] 2020 PSO SOP dynamically control the inter-particle communication topology of PSO

LRMODE [91] 2020 DE MOOP incorporate landscape analysis to operator selection
RLDE [92] 2021 DE SOP dynamically adjust the scaling factor F in DE
LDE [37] 2021 DE SOP use LSTM to adaptively control F and CR in DE

RLEPSO [93] 2021 PSO SOP dynamically adjust factors in EPSO
qlDE [94] 2021 DE SOP dynamically determine parameter combinations of F and Cr in DE

DE-DQN [39] 2021 DE SOP mutation operator selection
RL-PSO [95] 2022 PSO SOP dynamically adjust random values in PSO update rule
RLLPSO [96] 2022 PSO LSOP adaptively adjust the number of performance levels in the population.
MADAC [97] 2022 MOEA/D MOOP dynamically adjust all parameters in MOEA/D by an multi-agent system

RL-CORCO [98] 2022 DE COP operator selection in constrained problems
MOEA/D-DQN [99] 2022 MOEA/D MOOP leverage DQN to select variation operators in MOEA
RL-SHADE [100] 2022 DE SOP perform mutation operator selection in SHADE
RL-HPSDE [35] 2022 DE SOP control parameter sampling method and mutation operator selection
NRLPSO [101] 2023 PSO SOP dynamically adjust learning paradigms and acceleration coefficients

Q-LSHADE [102] 2023 DE SOP dynamically control when to use the scheme to reduce the population.
LADE [103] 2023 DE SOP leverage three LSTM models to generate three sampling distributions of key parameters in DE

LES [48] 2023 CMA-ES SOP use self-attention mechanism to adjust the step size in CMA-ES
RLAM [104] 2023 PSO SOP enhance the PSO convergence by using RL to control the coefficients of the PSO

MPSORL [105] 2023 PSO SOP adaptivly select strategy in multi-strategy PSO
RLDMDE [106] 2023 DE SOP adaptively select mutation strategy of each population in multi-population DE
RLMMDE [107] 2023 MOEA MOOP dynamically determine whether to perform reference point adaptation method

MARLABC [108] 2023 ABC SOP dynamically select optimization strategy
CEDE-DRL [109] 2023 DE COP dynamically select suitable parent population

AMODE-DRL [110] 2023 MODE MOOP two RL agents, one for mutation operator selection, one for parameter tuning
RLHDE [111] 2023 DE SOP use Q-learning to select mutation operators in QLSHADE and control the trigger parameters in HLSHADE
GLEET [38] 2024 PSO,DE SOP dynamic hyper-parameters tuning based on exploration-exploitation tradeoff features

RLMODE [112] 2024 DE MOOP dynamically control the key parameters in DE update rule
RLNS [113] 2024 SSA,PSO,EO MMOP dynamically adjust the subpopulation size

ada-smoDE [114] 2024 DE SOP dynamically control the key parameters in DE update rule
PG-DE [115] 2024 DE SOP dynamic operator selection

SA-DQN-DE [116] 2024 DE MMOP dynamically select proper local search operators
RLEMMO [56] 2024 DE MMOP dynamically select DE mutation operators

MRL-MOEA [55] 2024 MOEA MOOP dynamically select crossover operator in MOEA
MSoRL [117] 2024 PSO LSOP automatically estimate the search potential of each particle

UES-CMAES-RL [118] 2024 UES CMAES SOP determine parameters in restart strategy by RL agent
HF [119] 2024 DE SOP,CO dynamically select DE mutation operators by RL agent or manual mechanism

MTDE-L2T [57] 2024 DE MTOP control information sharing in multi-population DE to solve MTOP
ConfigX [120] 2025 DE,PSO,GA SOP universally control parameters and select operators for modular algorithms
MetaDE [121] 2025 DE SOP a self-referential framework where DE is used to configure DE parameters
KLEA [122] 2025 MOEA LSMOP dynamically switch dimension reduction strategies

RLDE-AFL [123] 2025 DE SOP dynamically select DE mutation and crossover operators for each individual, and control their parameters
SurrRLDE [124] 2025 DE SOP using Kan-based neural networks as surrogate models for MetaBBO

LCC-CMAES [125] 2025 CMA-ES LSOP dynamically select problem decomposition operators during the cooperative co-evolution

So
lu

tio
n

M
an

ip
ul

at
io

n

RNN-OI [44] 2017 - SOP use RNN as a BBO algorithm to output solutions iteratively
RNN-Opt [45] 2019 - SOP using RNN as a algorithm to output sample distribution iteratively

LTO-POMDP [47] 2021 - SOP LSTM-based optimizer to output per-dimensional distribution
MELBA [126] 2022 - SOP use Transformer-based model to output sample distribution

LGA [49] 2023 GA SOP use attention mechanism to imitate crossover and mutation in GA
OPRO [127] 2023 - SOP use LLMs as optimizer to output solutions
LMEA [128] 2023 - SOP use LLMs to select parent solutions and perform crossover and mutation to generate offspring solutions

MOEA/D-LLM [129] 2023 MOEA/D MOOP use LLMs as the optimizer in MOEA/D process
ELM [130] 2023 - CO use LLM agent to generate benchmark programs through evolution of existing ones

ToLLM [131] 2023 - SOP prompt LLMs to generate solutions
GLHF [46] 2024 DE SOP use neural network to imitate mutation and crossover in DE

B2Opt [132] 2024 GA SOP use neural network to imitate operators in GA
RIBBO [43] 2024 - SOP use GPT model to output optimization trajectories

EvoLLM [51] 2024 - SOP imitate ES’s optimization behaviour by iteratively prompting LLM
EvoTF [42] 2024 - SOP use Transformer-based network to output ES’s distribution parameter
LEO [133] 2024 - SOP exploitation via LLM instead of crossover and mutation

CCMO-LLM [134] 2024 - CMOP use LLM as the search operator within a classical CMOEA framework

A
lg

or
ith

m
G

en
er

at
io

n

GSF [135] 2022 - CO generate whole BBO algorithm by using RL agent to select operators from fixed algorithmic template
AEL [136] 2023 - CO use LLM to evolve algorithm source code
EoH [52] 2023 - CO use LLM agent to evolve algorithm’s thoughts and source code

SYMBOL [137] 2024 - SOP automatically generate symbolic update rules along optimization process through LSTM
LLaMEA [138] 2024 - SOP use LLM to evolve EA algorithm
LLMOPT [139] 2024 - MOOP use LLM to evolve operators for multi-objective optimizer
LLaMoCo [41] 2024 - SOP instruction-tuning for LLM to generate accurate algorithm code
OptiMUS [53] 2024 - MILP develop multi-agent pipelines for LLM to solve MILP problem as a professional team

LLM-EPS [140] 2024 - - use LLM to generate offspring codes in evolutionary program search
ALDes [141] 2024 - SOP sequentially generate each component in an algorithm through auto-regressive inference

https://github.com/MetaEvo/Awesome-MetaBBO
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Fig. 3. Conceptual workflow of MetaBBO for Algorithm Selection.

tasks, along with their references, publication years, low-level
optimizers, targeted problem types1, and technical summaries.

A. Algorithm Selection

Algorithm Selection (AS) has been discussed for
decades [142], [143]. The goal of AS is to select the
most suitable algorithm from the algorithm pool according
to the target task. The motivation of AS is that optimization
behaviors and preferred scenarios vary with the algorithms,
resulting in a notable performance difference [144]. Initially,
AS is performed by human experts, who suggest algorithms
based on their knowledge, which is labor-intensive and
requires extensive expertise. To alleviate this dependency,
researchers seek to develop more automated approaches.

1) Formulation: We examine the common AS paradigm. In
the low-level BBO process, the component A = {A1, ...AK}
represents an algorithm pool A with K candidate BBO
algorithms. The algorithm design space Ω = {1, 2...,K}
is the selective space involving all indexes of the candidate
algorithms, where ω ∈ Ω denotes an index of a candidate
from A. For each problem instance fi in the training set, the
goal of AS is to output an algorithm decision ωt

i for fi at each
optimization step t. As illustrated in Fig. 3, MetaBBO auto-
mates this task by maintaining a learnable meta-level policy
πθ with parameters θ, which takes a state feature sti obtained
by sf(·) describing the optimization state of this optimization
step, and then outputs ωt

i . The selected candidate algorithm
A[ωt

i ] is used to optimize fi in the low-level BBO process. Its
performance on fi serves as the performance measurement
in Eq. (1). MetaBBO aims to find an optimal meta-level
policy that suggests a best-performing algorithm in A for
each fi at each optimization step t automatically. Suppose
the optimization horizon of the low-level BBO process is T ,
the meta-objective J(θ) of AS is calculated as:

J(θ) ≈ 1

N

N∑
i=1

T∑
t=1

perf(A[ωt
i ], fi) (2)

After training, πθ is expected to select well-matched candidate
algorithms from A for unseen problems.

1We use SOP, MOOP, COP, CMOP, MMOP, MMOOP, LSOP, LS-MOOP,
MILP and CO to denote single-objective optimization, multi-objective opti-
mization, constrained optimization, constrained multi-objective optimization,
multi-modal optimization, multi-modal multi-objective optimization, large-
scale optimization, large-scale multi-objective optimization, mixed integer
linear programming and combinatorial optimization, respectively.

2) Related Works: First, per-instance AS is widely adopted
in the literature, where a single algorithm is selected for the
entire optimization progress for each specific problem, mean-
ing that ωt

i remains time-invariant. A straightforward approach
to learning an effective meta-level policy for the AS task is
to form a logical association between the attributes of fi and
the algorithm selection decision ωi that corresponds to them.
Since typically the number of candidate algorithms in the pool
A is finite, many early-stage MetaBBO for AS researches
transformed the meta-level learning process to a classification
task [77]–[83], [145], [146]. In their methodologies, the state
feature extraction function sf(·) in Eq. (1) extracts problem
characteristics si of fi, which is significant enough to distin-
guish fi with the other problem instances. A benchmarking
process is employed to identify the top-performing candidate
algorithm for fi. The identified algorithm is then used as
the classification label. The meta-level policy πθ is regarded
as a classifier and hence meta-trained to achieve maximum
prediction accuracy. The state feature extraction mechanism
sf(·) in these works can be very different according to the
target optimization problem types. Meta-QAP [77], Meta-
TSP [78] and Meta-VRP [80] construct an information col-
lection termed as meta data for combinatorial optimization
problems, which maintains the nodes information, edge con-
nections in the graph and constraints of a problem instance.
For continuous single-objective optimization problems, ex-
ploratory landscape analysis (ELA) techniques are adopted
in [79], [82], [145], [146], which profiles the objective space
characteristics of a problem instance such as the convexity,
peaks and valleys. While for multi-objective optimization, the
options are comparatively limited, with representative works
as the decomposition-based landscape features [147], [148].
These works mainly apply basic classification models such as
Support Vector Machine (SVM), K-Nearest Neighbors (KNN)
and Multi-Layer Perceptron (MLP) for the label prediction. In
contrast, to achieve in-depth data mining of the relationship
between the problem structures and the optimizer performance,
the study in [81] uses symbolic regression techniques to
recover the mathematical equation of the given problem and
then leverages a Long Short-Term Memory (LSTM) [149]
to auto-regressively predict the desired candidate algorithm.
The study in [150] introduces time-series of fitnesses obtained
from the first few iterations of an algorithm as trajectory
feature inputs and employs ML methods such as Random
Forest for algorithm selection. Ana et al. [151], [152] propose
per-run AS that conducts a warm-starting strategy to enhance
the trajectory-based ELA sampling. TransOptAS [85] explores
the possibility of constructing a performance indicator based
solely on the raw objective values to eliminate the computation
cost for computing sf(·). It leverages a Transformer [153]-
styled architecture that takes a batch of sampled objective
values as input and outputs the performance of the can-
didate algorithms through supervision under the benchmark
results. AS-LLM [83] leverages pre-trained LLM embeddings
to extract features from the candidate algorithms and the
target optimization problem, then selects the best algorithm
by feature similarities.

Several latest MetaBBO works explored the possibility of
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extending per-instance AS to dynamic AS during the low-
level BBO process [40], [54], [84]. Concretely, the meta-level
algorithm design task in this paradigm turns to flexibly suggest
one candidate algorithm to optimize fi for each optimization
step t. The dynamic AS is regarded as Markov Decision
Process in the mentioned MetaBBO works and hence can be
maximized by using RL to meta-learn an optimal policy. The
optimization state feature in RL-DAS [40] includes not only
the problem properties but also the dynamic optimization state
information to support such flexible algorithm switch which
help RL-DAS achieve at most 13% performance improvement
over the advanced DE variants in its algorithm pool.

Moreover, the fundamental nature of AS highlights the
significance of constructing the algorithm pool A, which ne-
cessitates a comprehensive understanding of the target problem
distribution and effective BBO algorithms. An effective pool
should include a variety of BBO algorithms to tackle problems
with diverse characteristics. Consequently, there is consider-
able interest among researchers in the automatic construction
of algorithm portfolios. This involves leveraging data-driven
approaches, such as Hydra [154], AutoFolio [155], and PS-
AAS [156], which offer extensive analysis and valuable in-
sights for developing the algorithm pool A.

3) Challenges: While past research has made progress in
AS, several technical challenges persist:

• For per-instance AS, labeling the training set is expensive
due to the exhaustive search needed to find the optimal
algorithm for each instance. Limited candidates and prob-
lem instances lead to generalization issues. In dynamic
AS, the increased methodological complexity challenges
the learning effectiveness of RL methods.

• The algorithm design space in MetaBBO for AS is
coarse-grained, limited by the performance of individual
algorithms without tuning their configurations. In the
next section, we introduce algorithm configuration tasks,
which offer larger and more fine-grained design spaces.

B. Algorithm Configuration
Algorithm configuration (AC) is a key task in optimization,

since almost all BBO algorithms possess hyper-parameters
[157] and optional operators [158] that affect performance. To
automate the AC task, various adaptive and self-adaptive BBO
algorithms have been developed in the past decades [159].
Algorithms like JADE [25] and APSO [26] leverage historical
optimization data to compute informative decision statistics
such as the potential of the hyper-parameter values and the
success rates of the optional operators [160]–[162]. However,
as discussed in the introduction, these approaches suffer from
design bias, limited generalization, and high labor costs.

1) Formulation: As shown in Fig. 4, MetaBBO overcomes
the limitations of manual AC techniques by using meta-
learning to develop a meta-level configuration policy. This
policy dynamically adjusts a BBO algorithm throughout the
lower-level BBO procedure. More formally: in the low-level
BBO process, the optimizer A represents the BBO algorithm
to be configured. The algorithm design space Ω is hence the
configuration space of A. The size of Ω can be either infi-
nite (with continuous hyper-parameters) or finite (with discrete

hyper-parameters or several optional operators). MetaBBO
dictates AC in a dynamic manner: given a problem instance
fi, at each optimization step t of the low-level BBO process,
a state feature sti is obtained by sf(·) to describe the state of
this optimization step. The meta-level policy πθ (s

t
i) outputs

the algorithm design ωt
i , which sets the configuration of A as

A.set (ωt
i). Then the algorithm is used to optimize fi for the

current optimization step. Suppose the optimization horizon of
the low-level BBO process is T , the meta-objective J(θ) of
MetaBBO for AC is formulated as

J(θ) ≈ 1

N

N∑
i=1

T∑
t=1

perf(A.set(ωt
i), fi) (3)

MetaBBO for AC improves on human-crafted adaptive
methods by meta-learning the configuration policy through
optimizing the meta-objective in Eq. (3), removing the need
for labor-intensive, expert-driven designs. The bi-level meta-
learning paradigm also enhances generalization, as the policy
can be trained on a large set of problem instances, distilling
configuration strategies that can be applied to new problems.

2) Related Works: Typically, the AC studies involve a two-
step process: initially choosing an algorithm template and
subsequently adjusting internal components or parameters. In
this paper, we categorize existing MetaBBO for AC research
into three distinct subgroups based on the second step. The
first sub-category is adaptive operator selection (AOS), where
several optional operators is flexibly selected by the meta-level
policy. The second is hyper-parameter optimization (HPO),
where the hyper-parameter values are controlled by the meta-
level policy. The last is the combination of AOS and HPO,
where Ω is a complex configuration space including both
hyper-parameters and operators. Next we introduce related
works in these sub-categories.

a) Adaptive Operator Selection: The works in this line
aims to dynamically switch the operators of the low-level
BBO algorithms during the optimization process. The majority
of AOS methods still focus on DE algorithms [34], [39],
[91], [98]–[100], [106], [111], [163], due to their strong
performance and the availability of various operators for se-
lection. These works share similar methodologies: a mutation
operator pool is maintained, involving representative mutation
operators such as DE/rand/2, DE/best/2, DE/current-to-rand/1,
DE/current-to-best/1 and DE/current-to-pbest/1. In order to
address different types of problems, the technical differences in
these works revolve around the tailored state feature extraction
design and the operator pool. The state feature extraction in
these works can be divided into two main strategies: discrete
representation and continuous representation.

For discrete state representation, the study in [163] first
computes the diversity variation and the performance im-
provement between two consecutive optimization steps as an
effective profile of the optimization dynamics. These two
indicators, being continuous variables, are then divided into
five distinct levels each. According to the discretized state
feature, a Q-table policy is constructed to select one operator
from an operator pool with three candidates. RLHDE [111]
uses the relative density in the solution space and the objective
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space against the initial population and objective values to
indicate the convergence trend and the performance improve-
ment. The values of the two density indicators are discretized
into five and four levels respectively, constituting 20 different
optimization states. The operators pool in RLHDE involves
six mutation operators, which improve the diversity of the op-
timization behaviours. RL-CORCO [98] addresses constrained
multi-objective optimization by enhancing the CORCO al-
gorithm through multiple Q-table policies. In the algorithm,
each sub-population maintains a Q-table, where rows represent
nine states indicating different levels of objective improvement
and constraint violation, and columns represent two mutation
operators. The policy selects the appropriate mutation operator
to optimize the solution as effectively as possible.

Compared to discrete features, continuous state feature
extraction enables finer state modeling, providing unique rep-
resentations for optimization states and leading to smarter de-
cisions by the meta-level policy. For instance, DE-DDQN [34]
proposes a very comprehensive optimization state extraction
function, which computes a total of 99 features: the first 19
features describe the optimization progress and the properties
of the target optimization problems, while the rest 80 are
statistics describing the optimization potential of the four mu-
tation operators in the operator pool. An MLP neural network-
based meta-level policy generates Q-values for the candidate
mutation operators and the one with maximal Q-value is
chosen for the next optimization step. Following DE-DDQN,
DEDQN [39] and MOEA/D-DQN [99] also construct MLP
policies. DEDQN indicates that the features in DE-DDQN
show certain redundancy and might fall short in capturing the
local landscape features. To address this, DEDQN proposes
a feature extraction mechanism inspired from classical fitness
landscape analysis [164]. By using random walk sampling,
DEDQN computes ruggedness and fitness distance correla-
tions in the local landscape. Results show that landscape
features are effective for MetaBBO methods to generalize
across problem types, i.e., from synthetic problems to realistic
problems [32]. For addressing multi-objective optimization
problem, MOEA/D-DQN embeds the information of the refer-
ence vectors in MOEA/D into the state extraction. KLEA [122]
further explore effective RL policy that could adaptively select
desired dimension reduction strategies to enhance MOEA/D
in large scale problem instances. To tackle multi-modal op-
timization problem, RLEMMO [56] first clusters solutions to
compute the neighborhood information. The optimization state
is then constructed by concatenating optimization progress,
distributional properties and neighborhood information.

Besides the selection of DE modules [165], other BBO algo-
rithms such as PSO and CMA-ES also have their own modular
frameworks (i.e., PSO-X [166] for PSO and modCMA [167]
for CMA-ES), and operator selection methods [86], [105].
Furthermore, a novel genetic BBO algorithm modularization
system covering diverse algorithm modules from DE, PSO
and GA is developed in [120], where a Transformer-based
agent, named ConfigX, is proposed to meta-learn a universal
configuration policy through multitask reinforcement learn-
ing across a designed joint optimization task space.

b) Hyper-parameter Optimization: Several early at-
tempts meta-learn a configuration policy that dictates a single
hyper-parameter setting throughout the entire process of solv-
ing a problem instance [168], [169]. Now, most MetaBBO for
AC approaches follow the dynamic AC paradigm in Eq. (3),
offering a flexible exploration-exploitation tradeoff to further
improve the optimization performance. Since different BBO
algorithms have distinct hyper-parameters, existing MetaBBO
for AC works customize their methods to explore the intricate
relationships between the hyper-parameters and the resulting
exploration-exploitation tradeoff in each specific algorithm.

Since DE is known to be highly sensitive to hyperparameter
settings, particularly the scaling factor F and the crossover
probability Cr, many efforts have focused on meta-tuning DE.
RLDE [92] propose a simple Q-table policy to adjust F when
optimizing the power generation efficiency in solar energy
system. It uses a Boolean indicator as the optimization state
feature: indicating whether the solution quality is improved
between two optimization steps. The algorithm design space,
represented as δF ∈ {−0.1, 0, 0.1}, indicates the variation
in F for the subsequent optimization step. Following RLDE,
QLDE [94] extends the algorithm design space to five combi-
nations of the parameter values. RLMODE [112] further pro-
poses a specific state extraction function for constrained multi-
objective optimization, which divided the state feature into
eight possible situations, according to the solution feasibility
and the dominance relationship. The algorithm design space is
three combinations of different F and Cr settings to represent
different exploration-exploitation tradeoffs. The Q-table agent
is updated by first selecting the most promising combination
and then observing the resulting performance improvement.
For more fine-grained parameter control, LDE [37] firstly
considers using recurrent neural network (i.e., LSTM) as
the meta-level policy, which extracts hidden state feature for
separate optimization step and outputs the values for F and Cr
from a continuous range [0, 1]. The same authors subsequently
propose LADE [103] as a extension of LDE. Compared to
LDE, LADE aims to control more hyper-parameters including
not only the mutation strength and crossover rate but also
the update weights. All parameters are represented as matrix
operations. Instead of using one LSTM for controlling all
parameters, LADE’s meta-level policy comprises three LSTM
networks for controlling these parameters respectively. LADE
show more robust learning effectiveness than LDE. A re-
cent study, L2T [57], employs the MetaBBO framework to
regulate the setting of DE parameters and the likelihood of
knowledge transfer within the multitask optimization working
scenarios. The state feature is represented by the rate of
successful transfers and the enhancement in sub-population
performance. Despite adapting F and Cr, the control of pop-
ulation size is considered in Q-LSHADE [102]. The algorithm
design space is the decay rate of the linear population size
reduction in LSHADE [170], which can take values from
{0, 0.2}. Q-LSHADE also meta-learns a Q-table policy by the
feedback indicating the performance improvement. There are
also several MetaBBO works which facilitate hyper-parameter
optimization on other algorithms, such as PSO [36], [38],
[88], [93], [95], [96], [104], [113], ES [48], [90], and the
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Fig. 4. Conceptual workflow of MetaBBO for Algorithm Configuration.

Firefly algorithm [171]. In addition, a recent work GLEET [38]
proposes a general learning paradigm which show generic
HPO ability for both DE and PSO. Due to the space limitation,
other related works are summarized in Table I.

c) Hybrid Control: Some MetaBBO works explore other
AC perspectives [115], [119]. In particular, the combination
of HPO and AOS has gained significant attention [35], [87],
[97], [101], [110], [111], since learning a meta-level policy
in ΩHPO+AOS would probably result in a better AC policy
than learning them separately. Nevertheless, this poses a
significant challenge as learning from an expanded algorithm
design space necessitates more intricate learning strategies and
model frameworks. Thoughtful design is essential to guarantee
effective learning.

3) Challenges: Despite their success, existing MetaBBO
works for AC still face some challenges.

• A certain proportion of existing methods use a very
limited set of training problems. In particular, some only
train their meta-level policies on a specific optimization
problem instance, raising doubts about the true general-
ization performance of the resulting policies.

• MetaBBO for AC works operate on the basis of prede-
fined low-level BBO algorithms. Hence, the performance
of these methods is closely tied to the original BBO
algorithm. Furthermore, the inherent algorithm structures,
optimization logic, and design biases significantly restrict
the algorithm design space. Can we further expand the
algorithm design space and step out this boundary? In the
next two subsections, we introduce two novel categories
of MetaBBO works that offer potential solutions.

C. Solution Manipulation

So far, we have introduced two basic categories of
MetaBBO: AS and AC. An intuitive observation is that within
the MetaBBO framework for AS/AC tasks, the low-level BBO
procedure necessitates a BBO algorithm as the foundational
optimizer, which comes with a defined algorithm design space
(e.g., algorithm pool or configuration space). This leads to two
limitations. First, it requires expert knowledge to select an
appropriate BBO algorithm, otherwise the meta-level policy’s
learning effectiveness and overall performance may suffer.
Second, managing both the meta-level policy and the low-level
BBO optimizer simultaneously incurs certain computational
costs. To address these limitations, several MetaBBO works
have explored the potential of directly using the meta-level
policy for solution manipulation. This approach integrates
meta-level training and low-level optimization into a single
entity, eliminating the need for a predefined BBO algorithm.

In this framework, the meta-level policy itself functions as
an optimization algorithm, directly manipulating candidate
solutions throughout the optimization process. We illustrate
this MetaBBO workflow in Fig. 5, referring to it as MetaBBO
for solution manipulation (SM).

1) Formulation: To formulate the process of solution ma-
nipulation in MetaBBO, some clarifications have to be made.
First, MetaBBO for SM integrates the functions of meta-
level policy and the low-level BBO algorithm into a single
parameterized agent πθ, removing the need for a traditionally
perceived BBO algorithm. Therefore, the meta-level policy
πθ, typically a neural network, inherently serves as the BBO
algorithm. In this case, the algorithm design space Ω turns
to the parameter space of the policy, where each algorithm
design ω in this space corresponds to the values of the neural
network parameters θ. Given a problem instance fi, at each
optimization step t, the optimization state feature sti is first
computed by sf(·). According to sti, the policy (acts as the
BBO algorithm) πθ optimizes fi for one optimization step,
e.g., reproducing the candidate solutions. The performance
improvement is hence measured as perf(πθ(s

t
i), fi). Suppose

the optimization horizon of the low-level BBO process is T ,
the meta-objective of MetaBBO for SM is formulated as

J(θ) ≈ 1

N

N∑
i=1

T∑
t=1

perf(πθ(s
t
i), fi) (4)

Through maximizing J(θ) over N problem instances in
the training set, a neural network-based BBO algorithm is
obtained, functioning similarly to human-crafted BBO algo-
rithms: iteratively optimizes the problem instances. Next, we
next introduce representative MetaBBO works for SM.

2) Related Works: An intuitive way of resembling the
iterative optimization behaviour by neural networks is con-
sidering temporal network structure such as recurrent neural
networks [44], [45], [47], which enable MetaBBO to directly
adjust candidate solutions over sequential steps. The corre-
sponding mathematical formulation is quite straightforward:

Xt, ht = πθ(X
t−1, Y t−1, ht−1), Y t = fi(X

t) (5)

where πθ is an RNN/LSTM, ht is the hidden state. This
paradigm is first adopted in RNN-OI [44], which meta-learns
an LSTM to reproduce candidate solutions. For each fi
in the training problem set, RNN-OI randomly initializes a
solution X0, obtains the corresponding objective values Y 0,
and then optimizes fi by iteratively inferring the next-step
solution. To meta-learn a well-performing πθ, the observed
improvement per step is computed as the perf(·) function.
Once trained, the LSTM serves as a BBO algorithm and
iteratively optimizes the target optimization problem following
Eq. (5). Due to the end-to-end inferring process, RNN-OI
is shown to run 104 times faster compared to hand-crafted
algorithms such as Spearmint [172]. Following RNN-OI, sim-
ilar works include RNN-Opt [45] improving RNN-OI through
input normalization and constraint-dependent loss function,
LTO-POMDP [47] using neuroevolution to learn the network
parameters, MELBA [126] improving the long sequence mod-
elling of RNN/LSTM by introducing Transformer structure,
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Fig. 5. Conceptual workflow of MetaBBO for Solution Manipulation.

and RIBBO [43] leveraging efficient and generic behaviour
cloning framework to learn an optimizer that resembles the
given teacher optimizer.

Nevertheless, the above works still suffer from generaliza-
tion limitation and interpretability issues. On the one hand, the
optimization state features only include the raw population
information, which makes the policy easily overfits to the
training problems. On the other hand, the learned policies in
these works shift toward “black-box” systems, which hinders
further analysis on what they have learned. In the last two
years, several more interpretable MetaBBO for SM works
are proposed to address these issues [42], [46], [49], [132].
These works propose using higher-level features as a substitute
for the raw features to achieve generalizable state features
across diverse problems. Typically, these features include
the distributional characteristics of the solution space and
the objective space, the rank of objective values, and the
temporal features reflecting the optimization dynamics. They
have proposed several novel architecture designs to make
the meta-level policy explicitly resembles representative EC
algorithms such GA [49], [132], DE [46], and ES [42].
For instance, LGA [49] designs two attention-based neural
network modules to act as the selection and mutation rate
adaption mechanisms in GA. The parameterized selection
module applies cross-attention between the parent population
and the child population, and the obtained attention score
matrix is used as the selection probability. The parameterized
mutation rate adaption module applies self-attention within
the child population, and the obtained attention scores is
used as the mutation rate variation strength. B2Opt [132]
improves LGA by proposing a novel, fully end-to-end network
architecture which resembles all algorithmic components in
GA, including crossover, mutation, selection. For example, the
selection module within B2Opt utilizes a method similar to
the residual connection in Transformer, facilitating the use of
matrix operations for selecting populations. By meta-training
the proposed meta-level policies on the training problem set,
these MetaBBO for SM works show competitive optimization
performance. In particular, their meta-level policies are trained
with low dimensional synthetic problems (≤ 10) yet could be
directly generalized for solving high dimensional continuous
control problems (> 500) [49], e.g., neuroevolution [173].

With the emergence of LLMs, their ability to understand the
reasoning in natural language outlines a novel opportunity for
SM. Related works in this line widely leverage the In-Context
Learning (ICL) [174] to prompt with general LLMs iteratively
as an analog to BBO algorithms to reproduce solutions. A

pioneer work is OPRO [127], which first provides LLMs a
context of the problem formulation and historical optimization
trajectory described in natural language. It then prompts LLMs
to suggest better solutions based on the provided context.
This idea soon becomes popular and spreads to multiple
optimization scenarios such as program search [130] combina-
torial optimization [128], multi-objective optimization [129],
[134], large scale optimization problem [51], [133] and prompt
optimization [50]. The eye-catching advantage of LLM-based
SM is that it requires minimal expertise - users only need
to describe the optimization problem in nature language, and
LLMs handle the rest.

3) Challenges: As a novel direction, MetaBBO for SM
is promising due to the end-to-end manner. However, several
technical challenges remain:

• Approaches like RNN-Opt directly learn to manipulate
candidate solutions without following a specific algorithm
structure. While this provides flexibility, these methods
often lack transparency and clear understanding of their
inner workings. Additionally, due to the complexity of
BBO tasks, exploring strong neural networks capable of
handling diverse, complex problems remains a challenge.

• In contrast, methods like LGA closely mimic the structure
and components of existing EAs, making the process
more transparent. However, because these methods re-
semble existing algorithms, their performance might be
inherently constrained by the limits of the original ones.

• MetaBBO approaches that use LLMs, while reducing the
need for manual algorithm design, face significant com-
putational overhead. The iterative interactions with LLMs
generate large volumes of tokens, leading to inefficiencies
in both time and cost.

• Finally, MetaBBO for SM treats the policy itself as the
optimizer, targeting at learning the optimal mapping from
current landscape to next candidate positions. However,
this remains a highly challenging task for continuous
BBO tasks. The possible landscapes are diverse and
infinite. As a result, so far, it is very challenging to build
and train a model that can effectively handle these com-
plexities in practice. In the next section, we will explore
the “algorithm generation” approach, which leverages the
meta-level policy as an algorithm discoverer, namely, us-
ing learning to create new algorithmic workflows, update
rules, and implementations.

D. Algorithm Generation

Besides MetaBBO for SM, an interesting research question
comes out: whether learning-based systems such as MetaBBO
could automatically create (generate) new BBO algorithms
with competitive optimization performance and minimal ex-
pertise requirement? To this end, MetaBBO for algorithm gen-
eration (AG) presents a different methodology: meta learning
a parameterized policy that could discover novel algorithms
accordingly without the human-expert prior, of which the
workflow is illustrated in Fig. 6. The difference between AG
and SM is that the meta-level policy in SM plays both the
role of the meta-level policy and the low-level optimizer, while
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the meta-level policy in AG is trained to output a complete
optimizer which is used then in the low-level BBO process.

1) Formulation: MetaBBO for AG works construct an
algorithm representation space Ω as its design space. For
example, Ω can be a algorithm workflow space, a mathematical
expression space or a programming language space, reflect-
ing the way humans express algorithms - through modular
algorithm workflows, symbolic mathematical expressions or
programming language syntax. For a problem instance fi,
a concrete algorithm design ωt

i is output by the meta-level
policy πθ, according to the optimization state feature sti. The
sf(·) function, in this case, can incorporate landscape features,
symbolic representations, or natural language descriptions of
fi. The generated ωt

i can be a complete workflow, a mathe-
matical expression or a functional program that represents a
novel BBO algorithm A. the meta-objective of MetaBBO for
AG is to meta learn a policy πθ capable of generating well-
performing algorithms:

J(θ) ≈ 1

N

N∑
i=1

T∑
t=1

perf(ωt
i , fi), ωt

i = πθ(s
t
i) (6)

where perf(ωt
i , fi) is the one-step optimization performance

gain of the generated algorithm on fi. Through training the
policy across a problem set, the policy is expected to auto-
matically generate flexible and even novel BBO algorithms
to address various optimization problems. Besides, note that
MetaBBO for AG could work with varying granularity: a) gen-
erating a universal algorithm for all problems [52], b) gen-
erating customized algorithms for each problem [141], and
c) generating flexible optimization rules that adapt to each step
of the optimization process and each specific problem [135],
[137]. In Eq. (6), we demonstrate the case c). In contrast, in
the case a), a single algorithm ω is generated to serve as ωt

i

in Eq. (6). In case b), a problem-specific ωi is generated to
serve as ωt

i for each optimization step in solving fi.
2) Related Works: Creating a comprehensive algorithm

representation space Ω is crucial for the meta-level policy
to produce innovative and efficient BBO algorithms. Current
MetaBBO methodologies for AG can be categorized into three
types based on their formulation of algorithm representation
space Ω: algorithm workflow composition, mathematical ex-
pressions, or natural/programming languages.

First, we introduce the works that perform algorithm work-
flow composition. A very early-stage work is conducted by
Schmidhuber [68] in 1987, where GP components are rep-
resented by the computer program space. Following such
idea, GP is further applied to create improved EA variation
operators [175], [176], evolve EA selection heuristics [177]

and generate complete algorithm template [178]. At the meta-
level, a GP is used to evolve low-level GP programs in a
self-referential way. In the latest literature, GSF [135] first
defines an algorithm template for EAs, then uses RL to fill
each part of the template with operators from a predefined
operator pool. ALDes [141] overcomes the limitation of using
fixed-length template through autoregresive learning. It first
tokenizes the common algorithmic components and the cor-
responding configuration parameters in EAs, as well as the
execution workflows such as loop and condition. Then, the
algorithm generation task turns into a sequence generation task
of the tokens. Concretely, ALDes prepares three types of op-
erators: four “selection for evolution” operators, six evolution
operators and five “selection for replacement” operators, each
is associated with some hyper-parameters. Given the property
of the target optimization problem, a Transformer-style policy
auto-regressively selects a desired operator and configures its
hyper-parameter from the candidate pool of each operator type.

Second, we introduce the works that leverage mathe-
matical expression to formulate Ω. The motivation behind
this line is that the design space of GSF and ALDes is
highly dependent on manual engineering, which may limit
the exploration of more novel algorithm structures. SYM-
BOL [137] addresses this issue by breaking down the up-
date equations of BBO algorithms into atomic mathematical
operators and operands. SYMBOL constructs a token set
of common mathematical symbols used in EAs, such as
{+,−,×, x, x∗, x−, x∗

i ,∆x, xr, c}. It then designs an LSTM-
based policy which is capable of auto-regressively generating
a sequence of these mathematical symbols. The generated se-
quence can be parsed into update equations for optimizing the
low-level optimization problem. SYMBOL generates flexible
update rules for each optimization step and each problem
instance, bringing in certain self-adaptation capabilities.

Third, we introduce works that leverage natural language
and programming language to define Ω. All works in this
line leverage LLMs as their meta-level policies [41], [52],
[53], [136], [138], [139]. The differences lie in the learn-
ing methodologies, the generation workflows and the target
problem types. OptiMUS [53] leverages modular-structured
LLM agents to formulate and solve (mixed integer) linear
programming problems. There are four agents in OptiMUS:
formulator, programmer, evaluator, and manager, which con-
stitute an optimization expert team and automate the algo-
rithm generation task through their cooperation. To enable
more general-purpose algorithm generation, AEL [136] and
EoH [52] are inspired by the evolution capability of large mod-
els [130], prompting LLMs to perform mutation and crossover
operations on code implementations of previous algorithms.
After evolution, the best-so-far algorithm generated shows at
most 24% performance margin over human-crafted heuristics
on Traveling Salesman Problems. Subsequent works such as
LLaMEA [138] and LLMOpt [139] generalize this paradigm
to continuous BBO scenarios, and LLaMEA is shown to
be capable of generating a more complex algorithm that
is competitive with CMA-ES within 1% score gap. Despite
the above works, LLaMoCo [41] offers a novel perspective:
instruction-tuning the general LLMs to act as an expert-
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level optimization programmer. LLaMoCo allows users to
describe their specific optimization problems in Python/LaTex
formulation, then it outputs the complete Python implemen-
tation of a desired optimizer for solving the given problems.
To achieve this, a large-scale benchmarking is conducted to
attain thousands of problem-solver pairs as the expert-level
optimization knowledge. This knowledge is then injected into
LLMs through instruction tuning. The experimental results in
LLaMoCo demonstrates that a small model (e.g., codeGen-
350M) could generate superior algorithm program to larger
models which are not fine-tuned by LLaMoCo (e.g., GPT-4),
underscoring that domain specific knowledge might be the key
for LLMs to understand, reasoning and solve problems.

3) Challenges: MetaBBO for AG works operate in a more
expressive algorithm design space. The experimental results in
some of these works demonstrate that the generated algorithms
are on par with or even superior to human-crafted ones. The
generated BBO algorithms can not only address optimization
problems, but also be further analysed by human experts for
novel insights in developing optimization techniques. Never-
theless, there are still several bottlenecks in existing works:

• As an early-stage research avenue, related works in this
area are still limited. More studies are expected to further
unleash the potential of MetaBBO for AG.

• For symbolic system-based generation frameworks such
as ALDes and SYMBOL, the token sets are relatively
small, which leads to limited representation capability.
How to construct a comprehensive and expressive token
set tailored for BBO algorithm, and how to ensure the
learning effectiveness in the enlarged algorithm design
space need further investigation.

• For LLM-assisted MetaBBO for AG, although the work-
flow promises an efficient development pipeline, the
computational resources required to obtain a competitive
BBO algorithm are substantial. Besides, these works
rely heavily on the prompt engineering, since LLMs are
sensitive to the prompts they receive.

IV. DIFFERENT LEARNING PARADIGMS AT META LEVEL

In this section, we introduce four key learning paradigms
behind the majority of existing MetaBBO works: MetaBBO
with reinforcement learning (MetaBBO-RL), MetaBBO with
supervised learning (MetaBBO-SL), MetaBBO with neuroevo-
lution (MetaBBO-NE) and MetaBBO with in-context learn-
ing (MetaBBO-ICL).

A. MetaBBO-RL
In MetaBBO-RL, the meta-level algorithm design task is

modeled as an MDP [66], [179], where the environment is
the low-level BBO process for a given problem instance f .
The optimization state feature space for s, the algorithm
design space Ω, and the performance metric perf(·) serve as
the MDP’s state space, action space, and reward function,
respectively. As a result, the meta-objective defined in Eq. (1)
becomes the expected accumulated reward. While various
RL techniques can be applied, the choice must be made by
considering the characteristics of the state and action spaces,
which we categorize into three main types below.

1) Discrete State & Discrete Action: Tabular Q-
learning [180] and SARSA [66] are value-based RL techniques
that maintain a Q-table to iteratively update state-action values
based on interactions with the environment. These methods
have a notable benefit in their straightforward Q-table struc-
tures, which facilitates efficient convergence and reliable effec-
tiveness. However, they are confined to MDPs with discrete
(finite) state and action spaces. Many MetaBBO-RL works
adopt these methods for their simplicity. In such works, opti-
mization states and algorithm designs are pre-defined to form
the rows and columns of the Q-table. At each optimization step
t in the low-level BBO process, the meta-level policy suggests
an algorithm design ωt according to st and the Q table. Then,
a transition < st, ωt, perf(st, ωt, f), st+1 > is obtained and
the Q-table is updated as

Q(st, ωt) = perf(st, ωt, f) + γmax
ω∈Ω

Q(st+1, ω) (7)

An example of this approach is the QLPSO algorithm [36],
which dynamically adjusts the particle swarm topology. In
QLPSO, the optimization states are {L2, L4, L8, L10}, repre-
senting different neighborhood size features of particles, with
corresponding actions to either maintain or change the neigh-
borhood size. Performance improvements resulting from suc-
cessful topology adjustments are rewarded. Other works using
similar methods include RLNS [113], QFA [171], qlDE [94],
RLMPSO [86], DE-RLFR [89], QL-(S)M-OPSO [88], MARL-
wCMA [163], LRMODE [91], RLEA-SSC [181], RLDE [92],
RL-CORCO [98], RL-SHADE [100].

2) Continuous State & Discrete Action: While Tabular Q-
learning and SARSA are effective for discrete state spaces,
some MetaBBO scenarios require continuous optimization
states for finer algorithm design. In such cases, the MDP
involves an infinite state space, making the Q-table structure
incompatible. To address this, neural network-based Q-agents,
such as DQN [182] and DDQN [183], are employed to handle
continuous state features. The Q-agent is updated by mini-
mizing the estimation error between the target and predicted
Q-functions as

Loss(θ) =
1

2

[
Qθ(s

t, ωt)−
(

perf(st, ωt, f)

+γmax
ω∈Ω

Qθ(s
t+1, ω)

)]2 (8)

A representative example is DEDQN [39], where the opti-
mization state is represented by four continuous FLA indicator
features derived from a random walking strategy. The meta-
level policy is an MLP Q-agent with three hidden layers. Dur-
ing the low-level BBO process, the Q-agent outputs Q-values
for three candidate DE mutation operators and selects one for
the current optimization step. The performance improvement
after this step serves as a reward. The transition obtained is
used to update the Q-agent by Eq. (8). Other works employing
similar methods include R2-RLMOEA [54], DE-DDQN [34],
MADAC [97], MOEA/D-DQN [99], CEDE-DRL [109], SA-
DQN-DE [116], UES-CMAES-RL [118], HF [119].
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3) Continuous State & Continuous Action: Building on
the success of RL techniques in continuous control [184],
some MetaBBO-RL works adopt policy gradient-based meth-
ods (e.g., REINFORCE [185], A2C [186], PPO [187]) to
handle both continuous states and algorithm designs. These
allow for more flexible control of optimization behavior in
the low-level BBO process, possibly improving performance.
In this case, a policy neural network πθ is used to output a
probability distribution over the algorithm design space based
on the optimization state. The gradient ∇θJ(θ) used to update
πθ is computed as

∇θJ(θ) = −∇θ log πθ(ω
t | st)

(
T∑

t′=t

γt′−tperf(st
′
, ωt′ , f)

)
(9)

We illustrate the method with the representative work
GLEET [38]. In GLEET, the optimization state is represented
by a structured feature set, including low-level information
such as solution/objective space density and performance
improvement indicators. A Transformer-style policy network
(3 layers) outputs the posterior Gaussian distribution for
each parameter of each individual. The concrete parame-
ter values are then sampled from this distributions for the
current optimization step, and the corresponding reward is
assigned. After completing an optimization episode (T steps),
the policy network πθ is updated by summing the gradients
from each step, as shown in Eq. (9). Other MetaBBO-RL
works employing similar methodologies include LTO [90],
RLEPSO [93], LDE [37], RL-PSO [95], MELBA [126],
MOEADRL [188], LADE [103], RLAM [104], AMODE-
DRL [110], PG-DE [115], GLEET [38], RLEMMO [56], RL-
DAS [40], SYMBOL [137].

B. MetaBBO-NE

Neuroevolution [189] is a machine learning subfield where
neural networks are evolved using EC methods rather than
updated by gradient descent. In [7], ES is demonstrated as a
scalable alternative to RL for MDPs, especially when actions
have long-lasting effects. This inspired the development of
MetaBBO methods using EC to evolve the policies, referred to
as MetaBBO-NE. In MetaBBO-NE, the meta-level maintains
a population of policies {πθ1 , . . . , πθK}, with each policy πθk

being used to guide the algorithm design task for a training
problem set. The fitness of each policy is the average perfor-
mance gain across the problem instances in the training set.
An EC method, such as ES, is employed to iteratively update
the the meta-level policies, and after several generations, the
optimal policy πθ∗ is obtained.

Representative works in MetaBBO-NE include LTO-
POMDP [47] and LGA [49]. For example, in LGA, a pop-
ulation of attention-based neural networks is maintained at
the meta-level, where each network functions as a neural GA
to manipulate solutions. The OpenAI-ES [7] is then used
to evolve K = 32 such networks over ten 10-dimensional
synthetic functions from the COCO benchmark [190].

C. MetaBBO-SL

MetaBBO works using the supervised learning paradigm
are closely related to the meta task of solution manipula-
tion (SM). As we described in Eq. (4), SM aims to learn a
parameterized meta-level policy πθ as the low-level optimizer.
The optimization process proceeds by iteratively calling πθ

to optimize the current (population of) solution(s). A key
difference between MetaBBO-SL and MetaBBO-RL is that
MetaBBO-SL meta-trains policies using direct gradient de-
scent on an explicit supervising objective. This resembles
regret minimization [191] of the target optimization problem’s
objective function. To illustrate this, let us examine the recent
work GLHF [46], which proposes an end-to-end MetaBBO
method mimicking a DE algorithm. GLHF unifies the DE
mutation and crossover operations as matrix operations and
designs πθ as two customized network modules, LMM and
LCM, to simulate matrix-based mutation and crossover. The
Gumbel-Softmax function is used in the crossover module
to make it differentiable. Given a solution population Xt at
the optimization step t when optimizing a problem f , the
πθ in GLHF optimizes Xt to generate offspring population:
Xt+1 = πθ(X

t). The explicit supervising objective in this
case is the objective value f(Xt+1), which serves as a regret
function to minimize. Then the gradient used to update the
policy at step t is computed as

∇θJ(θ) ∝
∂f(Xt+1)

∂πθ
· ∂πθ

∂θ
(10)

Minimizing this regret-based objective trains the meta-level
policy for effective optimization on the target problem. How-
ever, the differentiability of f is a requirement, which may
not hold for “black-box” problems. Other works in this line in-
clude RNN-OI [44], RNN-Opt [45], B2Opt [132], EvoTF [42],
LEO [133], RIBBO [43], NAP [192]. Notably, RIBBO [43]
and EvoTF [42] use supervised imitation learning to meta-train
their policies to mimic a teacher BBO algorithm. For instance,
RIBBO uses a GPT architecture to imitate optimization trajec-
tory from diverse existing BBO algorithms. It tokenizes each
of the collected optimization trajectories into a target token
sequence {R1, X1, Y 1, ..., RT , Xt, Y T }, where Rt, Xt and
Y t are the regret-based explicit supervising objective, pop-
ulation positions and objective values respectively. Through
behavior cloning, RIBBO trains the GPT to mimic these
trajectories, resulting in a generalized optimization behavior
and outperforming baselines on 3 out of 5 problems.

D. MetaBBO-ICL

In-Context Learning (ICL) [174] is a popular paradigm in
LLM research, which prompts LLMs with a structured text
collection: a task description, several in-context examples, and
a concrete task instruction. This structured prompt enables
LLMs to reason effectively based on the provided context,
without requiring gradient descent or parameter updates.
MetaBBO-ICL is closely related to two meta tasks: Solution
Manipulation (SM) and Algorithm Generation (AG). The main
distinction between existing works lies in how they construct
effective in-context prompts.
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Fig. 7. Performance comparisons. Top Left: Best objective values on synthetic testsuites. Top Right: AEI scores on synthetic testsuites. Bottom Left: Best
objective values on protein docking testsuites. Bottom Right: AEI scores on protein docking testsuites.

For the SM task, OPRO [127] introduces optimization via
iterative prompting. In each iteration, the task description
is tailored to the specific problem, including the objective
function and constraints in natural language. The in-context
examples consist of prior optimization trajectories, and the
task instruction asks the LLM to find a solution better than
the previous best. However, this approach faces challenges
due to the limited optimization expertise of general LLMs,
which are not typically trained with optimization knowledge
in mind [41]. Recent studies creatively suggest guiding LLMs
to mimic certain EAs [128], which involves directing LLMs
to execute mutation, crossover, and elitism strategies on the
specified in-context examples.

For the AG task, the core idea is using LLMs to understand
and evolve optimizer programs. Note that evolving programs
is not a novel concept. This topic traces back to Genetic
Programming (GP) method, which performs evolution of
computer program within the code space in a self-referential
way: evolve evolution algorithms. Leveraging the semantic
reasoning ability of CodeLLMs for program evolution, initial
works such as Funsearch [193] and EUREKA [194] discover
competitive heuristic program and reward design respectively.
Following these works, in MetaBBO-ICL, researchers begin
to discuss the possibility of evolving competitive optimization
program with CodeLLMs. A representative work in this area
is EoH [52], where the task description includes both the opti-
mization problem formulation and a concrete algorithm design
task. The LLM is asked to first describe a new heuristic and
then implement it in Python. The in-context examples consist
of previously suggested programs, while the task instruction
provides five evolution instructions, each with varying levels
of code refinement. Other related works include AEL [136],
LLaMEA [138], and LLMOPT [139].

In this section, we have introduced four key learning
paradigms widely adopted in existing MetaBBO works. To
summarize, each learning paradigm has its own advantages

and downsides. By the aid of powerful LLMs, MetaBBO-ICL
spends least efforts in developing and designing. In contrast,
MetaBBO-RL requires certain expertise in designing effective
RL systems, while achieving significant policy improvement.
As for the final performance, it is empirically observed that
MetaBBO-RL and MetaBBO-SL generally achieve superior
optimization results (see Fig. 7). As for the research interests
for the four learning paradigms, we found MetaBBO-RL is
continuously catching researchers’ attention, while MetaBBO-
ICL rises quickly (see Table I).

V. EMPIRICAL EVALUATION

A. Development in Benchmarks

For benchmarking BBO optimizers, many well-known test-
suites have been extensively studied and developed [195],
[196]. With the ongoing development of BBO, the correspond-
ing benchmarks aim to 1) propose more diverse benchmark
problems in synthetic [81], [197]–[202] and realistic [173],
[203], [204] scenarios; and 2) automate the benchmarking
process through a software platform [190], [205]. These
traditional BBO benchmarks can serve as evaluation tools
for MetaBBO methods. However, compared with traditional
EC algorithms, the system structure of MetaBBO is more
intricate. Its bi-level learning paradigm involves a meta-level
policy, a low-level optimizer, the training/testing logic of the
entire system, and the interfaces between the meta and lower
levels. This complexity creates a gap between the conventional
BBO benchmarks and MetaBBO methods. To address this
compatibility issue, a recent work termed MetaBox [32] pro-
poses the first benchmark platform specifically for developing
and evaluating MetaBBO methods. It provides three differ-
ent single-objective numerical problem collections (Synthetic-
10D, Noisy-Synthetic-10D, Protein-Docking-12D), along with
two different train-test split modes (easy and difficult), which
benefits MetaBBO’s training under different problem dis-
tributions and difficulties. In the next subsection, we pro-
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vide a proof-of-principle evaluation of several representative
MetaBBO methods using MetaBox.

B. Proof-of-Principle Evaluation by MetaBox

In this section, we use MetaBox [32] to evaluate the per-
formance of three traditional EC algorithms and ten represen-
tative MetaBBO methods. For traditional EC algorithms, we
empirically select three representative algorithms: JADE [25],
GLPSO [27] and CMA-ES [28] from three mainstream tradi-
tional BBO classes: DE [73], PSO [206] and ES [207], respec-
tively. Further, we include the MetaBBO methods covering all
four meta-tasks and all four learning paradigms:

• AS: RL-DAS [40] (RL-based dynamic selection);
• AC: DE-DDQN [34] (RL-based AOS); LDE [37]/

RLEPSO [93]/GLEET [38] (RL-based HPO); LES [48]
(NE-based HPO);

• AG: SYMBOL [137] (RL-based symbolic synthesis);
• SM: RNN-OI [44]/GLHF [46] (early/recent SL-based

trajectory prediction); OPRO [127] (ICL-based linguistic
optimization).

All experiments follows the protocols in MetaBox. Due to the
space limitation We leave the detailed baseline selection crite-
ria and experimental setup in Appendix I.A & I.B respectively.

The AEI score in MetaBox [32] evaluates the overall opti-
mization performance of a MetaBBO method by aggregating
three key metrics: final optimization results, FEs consumed,
and runtime complexity, using an exponential average, lager
is better. The left side of Fig. 7 presents the final opti-
mization accuracy of all baselines on Synthetic BBOB (top)
and Realistic Protein Docking (bottom) testsuites, while the
right side presents their respective AEI scores. The results
show that: 1) When considering only the final accuracy,
MetaBBO methods such as RL-DAS, LDE, and GLEET
achieve comparable or even superior performance to traditional
BBO optimizers, while some other MetaBBO methods still
perform inferiorly compared to traditional BBO methods. This
indicates that while MetaBBO methods show potential, as an
emerging topic, there is still significant room for improvement.
2) Different evaluation metrics yield different conclusions
regarding performance. When considering both optimization
performance and computational overhead, traditional BBO
optimizers such as CMA-ES achieve a significantly better
trade-off, as shown on the right side of Fig. 7. This highlights
a potential limitation of MetaBBO methods: they typically
involve additional computation during the meta-level decision-
making process. 3) Comparing the performance on the Syn-
thetic BBOB and Protein Docking test suites, we observe
that the performance gap between MetaBBO methods and
traditional BBO optimizers narrows on both evaluation metrics
as the problem type shifts from the relatively simpler synthetic
set to the more challenging realistic protein docking set. This
suggests that MetaBBO is promising for solving complex
optimization problems. 4) MetaBBO-RL methods (including
RL-DAS, DE-DDQN, LDE, RLEPSO, SYMBOL) outperform
MetaBBO-NE methods (LES), MetaBBO-SL methods (RNN-
OI) and MetaBBO-ICL methods (OPRO). This observation
highlights an important future direction for the MetaBBO

domain: analyzing the theoretical performance bounds of dif-
ferent MetaBBO methods. 5) The AEI of OPRO (MetaBBO-
ICL method) is significantly lower, this might indicate that
iteratively optimization paradigm through in-context prompt-
ing LLMs is severely challenged by the efficiency issue.

Besides the above algorithmic performances, one should
also examine a MetaBBO method’s learning capability. As
a learning system, it is expected that a MetaBBO method
should show certain generalization ability on unseen prob-
lem instances/distributions. To this end, we have tested the
MetaBBO baselines on MetaBox for their Meta Generalization
Decay (MGD) Meta Transfer Efficiency (MTE), two indicators
proposed in MetaBOx to measure a MetaBBO method’s
learning ability. Detailed results are provided in Appendix II.

VI. KEY DESIGN STRATEGIES

A. Neural Network Design

Four common neural network architectures are frequently
adopted: 1) MLP, 2) RNN and LSTM, 3) temporal dependency
Transformer, and 4) spatial dependency Transformer, as illus-
trated in Fig. 8 from left to right. The basic MLP (leftmost in
Fig. 8) is widely used in existing works due to its simplicity
and efficiency in training and inference. However, the MLP is
limited in analyzing the temporal and data batch dependencies
within the low-level BBO process. We next introduce novel
designs that address these limitations.

1) Temporal Dependency Architectures: The low-level
BBO process involves iterative optimization over T genera-
tions. A basic MLP-based policy may struggle to effectively
leverage historical information along the optimization trajec-
tory. Then, an intuitive solution is to introduce architectures
that support temporal sequence modeling. To this end, works
such as RNN-OI [44], RNN-Opt [45], and LTO-POMDP [47]
introduce RNNs and LSTMs [149], which integrate historical
optimization information into hidden representations and com-
bine it with the current optimization state (shown in the second
part of Fig. 8). While these approaches improve learning
effectiveness by incorporating historical information, training
on long horizons (often involving hundreds of generations)
using RNN/LSTM can be challenging due to the inherent
issues of gradient vanishing or explosion. Subsequent works,
such as MELBA [126], RIBBO [43], and EvoTF [42], address
this limitation by leveraging Transformer architectures for
better long-sequence modeling. The common workflow in
these works is illustrated in the third part of Fig. 8, where
a trajectory of historical optimization states is processed by
the Transformer to inform the next step in algorithm design.

2) Spatial Dependency Architectures: In addition to tem-
poral properties, a key characteristic of EC is its population-
based search manner. Recent MetaBBO methods tailor al-
gorithmic components for each individual in the population,
maximizing flexibility for low-level optimization. As illus-
trated in the rightmost part of Fig. 8, works such as LGA
[49], LES [48], B2Opt [132], GLEET [38], RLEMMO [56],
and GLHF [46] construct optimization state features as a
collection of individual optimization states and leverage the
Transformer’s attention mechanism to enhance information
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Fig. 8. The workflow of different neural networks used in existing MetaBBO works: MLP, RNN/LSTM and Transformer architectures.

sharing across the population of individuals. For instance,
GLEET [38] proposes a novel Transformer-style network that
includes a “fully informed encoder” and an “exploration-
exploitation decoder”. The encoder promotes information shar-
ing by applying self-attention to the state features of all
individuals. The decoder then decodes the hyperparameter
values for each individual specifically. Besides mining the
spatial dependency in solution space, a recent work termed
as TabPFN [208] leverages attention mechanism and bayesian
prior to discover the spatial dependency in problem instance
space, which improves the performance in per-instance algo-
rithm selection [209].

B. State Feature Design

A key component for MetaBBO’s generalization across
diverse optimization problems is the state feature extraction
function sf(·). We identify three types of features: a) Problem
identification features, which captures the landscape properties
of the target problem. b) Population profiling features, which
describes the distribution of solutions in the low-level BBO
process. c) Optimization progress features, which tracks im-
provements in the solution evaluations at each step. Next, we
introduce common practices for preparing these features.

1) Problem Identification Features: To identify the target
optimization problem, the Exploratory Landscape Analysis
(ELA) framework [210] is widely used for single-objective
optimization problems. ELA includes six groups of metrics,
such as local search, skewness of the objective space, and
approximated curvature (both first and second-order), which
provide a comprehensive summary of the problem’s landscape
properties. To compute ELA features, a large number of points
are sampled from the BBO problem and used to compute the
features. For example, linear and quadratic models are fitted to
the sampled points and their objective values, and the resulting
model parameters have been shown to be useful for differenti-
ating different problems. For multi-objective optimization, the
features can be obtained by decomposing the problem into
single-objective sub-problems and conducting single-objective
feature analysis techniques [147].

2) Population Profiling Features: In an optimization prob-
lem, the solution population can converge to different regions
of the fitness landscape. MetaBBO aims to dynamically adapt
algorithm designs to help the low-level optimizer adjust to
these diverse regions. To analyze the distribution of the popu-
lation, Fitness Landscape Analysis (FLA) [164] is commonly
used, providing various indicators, such as Fitness Distance
Correlation [211], Ruggedness of Information Entropy [212],

Auto-Correlation Function [213], Dispersion [214], Negative
Slope Coefficient [215], and Average Neutral Ratio [216].
Some of these indicators measure local landscape properties
based on the population’s location in the fitness space. Pop-
ulation profiling features complement problem identification
features, providing the meta-level policy with a more accurate
optimization state for specific optimization steps.

3) Optimization Progress Features: Optimization progress
features further complement ELA and FLA features by pro-
viding the meta-level policy with additional information on
objective evaluation-related properties, such as the consumed
FEs, and the distribution of the current population along with
the objective values. These features track the improvement and
convergence of the population. Interestingly, recent MetaBBO
works like DE-DDQN [34], RLEPSO [93], and GLEET [38]
have found that optimization progress features alone can be
sufficient for learning a generalizable meta-level policy. A key
reason is that computing ELA/FLA features consumes addi-
tional FEs, which reduces the learning steps available for the
meta-level policy, thus degrading both learning effectiveness
and final optimization performance.

C. Training Distribution Design

The training problem set is crucial for learning a gener-
alizable meta-level policy, with diversity being a key factor.
Early works like RNN-OI [44] were trained on a limited set of
instances from the CoCo-BBOB test suite. As shown in Fig. 7,
a narrow training set leads to poor generalization. To enhance
the diversity of the training set, two main methodologies are
commonly used in existing MetaBBO approaches.

1) Augmenting Existing Benchmarks: Standard BBO
benchmarks include the CoCo-BBOB [196], [217] and CEC
BBOB-Competition [195], [218] testsuites, which contain ap-
proximately 20–30 synthetic functions with various proper-
ties like multimodality, non-separability, and non-convexity.
Most MetaBBO works augment these testsuites by mathemat-
ical transformations: given a D-dimensional function instance
f(x) : RD → R, it can be transformed to a new instance
f ′(x) = f(MT (x − o)), where M ∈ RD×D is a rotation
matrix and o ∈ RD is an offset to the optimal. For example,
recent works like GLEET [38] and RL-DAS [40] apply
random combinations of shifts and rotations on the CEC2021
test suite [195], generating thousands of synthetic instances
and significantly improving the generalization performance of
the learned meta-level policy.

2) Constructing New Benchmarks: While augmenting
existing standard synthetic functions with shift and rotation
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Fig. 9. The projected 2D ELA distributions of Left: the original BBOB
problems; Middle: the BBOB problems with shifted optimum; Right: the
BBOB problems generated by MA-BBOB [202].

transformations improves generalization, there is still room for
greater diversity in the problem set. To illustrate this, we show
the 2D projection of the ELA distribution for some CoCo-
BBOB problem instances and their transformed counterparts
in the left and middle of Fig. 9. The results reveal that the
transformations introduce some diversity, but the improvement
is still limited. There also exist a few studies that focus on the
sensitivity of the landscape features to represent the benchmark
functions, such as Škvorc et al. [219] reveal the importance of
sampling methods in the invariance of landscape features, and
Prager et al. [220] analyze the the sensitivity of landscape fea-
tures to absolute objective values. More effective approaches
are expected to generate novel benchmarks. The recent work
MA-BBOB [202] demonstrates that affine combinations of
existing synthetic functions can create more diverse instances.
This is shown in the right part of Fig. 9, where the instances
generated by MA-BBOB covers wider feature space.

D. Meta-Objective Design

The meta-objective J(θ) in MetaBBO represents the ex-
pected accumulated performance gain perf(·) over the prob-
lems in the training set. In existing MetaBBO works, perf(·) is
typically tied to the objective values of the solution population,
guiding the meta-level policy toward improved optimization
performance. An intuitive approach is to use an indicator
function: if performance improves between two optimization
steps, a positive reward is given; otherwise, a negative or zero
reward is assigned. This approach is widely used in early
MetaBBO works such as DE-DDQN [34], QLPSO [36], and
MARLwCMA [163].

1) Scale Normalization: Nevertheless, this basic approach
can pose challenges when aiming to precisely assess perfor-
mance improvements, which in turn could affect the adapt-
ability of the learned policy. An alternative method involves
computing perf(·) directly by determining the reduction in the
objective value, expressed as ∆f t = f∗,t−1 − f∗,t. However,
directly using this absolute objective value descent may lead to
unstable learning due to differing objective value scales across
various optimization problems. To mitigate this issue, recent
MetaBBO works apply normalization to the objective descent:

perf(·, t) = f∗,t−1 − f∗,t

f∗,1 − f∗ (11)

where f∗,1 denotes the objective value of the best solution
in the initialized population, and f∗ represents the optimum
of f . In practice, f∗ is unknown because f is a black-box

function. However, it can be approximated by an efficient BBO
algorithm running in advance.

2) Sparse Reward Handling: The difficulty of the low-
level BBO process increases over time. Initially, the objective
value may decrease rapidly, but later, the descent slows as con-
vergence approaches, often resulting in a sparse reward issue
in learning systems. This can mislead the learning of the meta-
level policy, causing it to favor sub-optimal algorithm designs
that focus primarily on the early stages of optimization. To
address this, recent works introduce an adaptive performance
metric with a scale factor λ(t) to Eq. (11) to amplify the
performance improvement in the later optimization stages:

perf(·, t) = λ(t)× f∗,t−1 − f∗,t

f∗,1 − f∗ (12)

where the scale factor λ(t) is a incremental function of the
optimization step t. For instance, in MADAC [97], λ(t) is
2f∗−f∗,t−1−f∗,t. However, ablation studies in RL-DAS [40],
GLEET [38], RIBBO [43], and GLHF [46] suggest that using
the unscaled, exact performance improvement metric without
a scaling factor may be more effective. This underscores the
variability in scaling methods’ effectiveness across different
MetaBBO tasks, warranting further investigation.

VII. VISION FOR THE FIELD

A. Generalization Toward Task Mixtures
A promising direction is the generalization toward a mix-

ture of tasks. While MetaBBO works have explored various
aspects of model generalization, the evaluation and analysis
we provide in previous sections outline potential improvement
through advanced learning techniques, e.g., transfer learning
[221] and multitask learning [222].

First, existing works often focus on algorithm design for
specific optimizers. For instance, methods like LDE [37]
and GLHF [46] are designed for algorithm configuration or
imitation tasks, but primarily with basic DE. This narrow
focus might lead to uncertain performance when applying
these methods to other optimizers. A more effective approach
would be to create a higher-level framework that defines
MetaBBO tasks across multiple optimizers, establishing a
multitask design space. Developing a universal modularization
paradigm for various optimizers could allow training a meta-
level policy that generalizes well across tasks.

Additionally, existing works focus exclusively on a single
specific problem type. Separate policies are trained for each
task type, leading to increased complexity. This outlines an
opportunity to develop a unified agent capable of engaging
in automatic algorithm design that adapts to various problem
types. This method not only streamlines the optimization
process but also aligns more closely with real-world scenarios,
where practitioners frequently encounter a diverse array of
problems. To overcome the limitations of existing methods, a
universal problem representation system is essential to bolster
the generalization across diverse problem domains.

B. Fully End-to-End Autonomy
The main motivation behind MetaBBO is to reduce the

labor-intensive need for expert consultation by offering a



17

general optimization framework. However, existing MetaBBO
approaches still introduce design elements that rely on expert
knowledge to enhance performance. This reliance typically
involves: 1) the low-level optimization state s, often hand-
crafted as a feature vector to represent problem properties
or optimization progress; and 2) the meta-objective, which
is mostly developer-defined, introducing subjectivity. While
initial efforts have been made to automate feature extraction
using neural networks [123], [223], [224] and employ model-
based RL to learn the meta-objective objectively [108], further
systematic studies are needed. Besides, MetaBBO focuses on
designing algorithms in isolation, assuming the optimization
problem is predefined and ready for evaluation. In reality,
the initial step often involves formulating the problem, ei-
ther through manual model construction [202] or data-driven
methods [124], [225]–[227]. This disconnect reveals a major
gap in the optimization process. A more integrated approach
would involve objective formulation learning, automatic fea-
ture extraction and customized algorithm design. Developing
a cohesive pipeline for these steps offers a promising direction
for advancing optimization and improving problem-solving in
practical applications.

C. Smarter Integration of LLMs
Although existing MetaBBO-ICL methods have shown pos-

sibility of leveraging general LLMs to assist algorithm design
tasks, they still face challenges considering computational
efficiency, code quality, intepretability, quality & diversity
control and reasoning ability for complex optimization tasks. It
has been observed MetaBBO-ICL methods (e.g., OPRO [127]
and LMEA [128]) have to consume 100-200k tokens during
the iterative in-context conversation with LLMs to achieve
certain optimization performance [41]. Such efficiency issue
is addressed by instruction-tuning general LLMs in [41].
However, the results in this work show that the error rate
of the output code is 5% - 10%, which degrades the final
performance. Considering the intepretability, since works such
as OPRO implicitly prompt LLMs to learn the intent for
optimization performance improvement, the logic behind the
LLMs reasoning workflow is still black-box to us, which
hinders the feedback loop between LLMs and human experts.
Besides, existing MetaBBO-ICL methods merely focus on the
quality & diversity control within the optimization process. Fu-
ture works must allow explicit commands for such exploration-
exploitation tradeoff [228]. Last but not least, recent researches
such as [229], [230] indicate the fragility of mathematical
reasoning in existing LLMs, which further questions those
LLM-assisted MetaBBO approaches.

This suggests two promising directions: First is the au-
tomated MetaBBO workflow search, leveraging LLMs for
designing MetaBBO workflow through code generation and
function search. Designing a learning system like MetaBBO
is inherently challenging, as it requires considerable expertise.
By providing LLMs with foundational principles of MetaBBO,
the chain of thought within the models may uncover novel
paradigms. Second, enhancing the semantic understanding of
LLMs regrading optimization processes, terminologies, pro-
gramming logics, problem descriptions would significantly

elevate their expertise. To achieve this, an interesting direc-
tion is to develop symbolic language tailored to optimiza-
tion domain, establishing a comprehensive grammar system
and accumulating sufficient use cases to train a founda-
tion model specifically for optimization. Third, since LLM-
based MetaBBO approaches implicitly requires (massive) pre-
training, an imminent future work for MetaBBO is to construct
fair benchmarking standards and platforms that could compare
MetaBBO approaches with traditional BBO methods fairly in
both computational cost and optimization performance.

VIII. CONCLUSION

In this survey, we provide a comprehensive review of recent
advancements in MetaBBO. As a novel research avenue within
the BBO and EC communities, MetaBBO offers a promising
paradigm for automated algorithm design. Through a bi-level
data-driven learning framework, MetaBBO is capable of meta-
learning effective neural network-based meta-level policies.
These policies assist with algorithm selection and algorithm
configuration for a given low-level optimizer, as well as to
imitate or generate optimizers with certain flexibility.

Our review begins with the mathematical definition of
MetaBBO, clarifying its bi-level control workflow. Next, we
systematically explore four main algorithm design tasks where
MetaBBO excels: AS, AC, SM, and AG. Following the discus-
sion of these tasks, we examine four methodologies of training
MetaBBO: SL, RL, NE, and ICL. We hope these two parts
will provide readers with a clear roadmap to quickly locate
their interested MetaBBO methods. Furthermore, we provide
comprehensive benchmarking on latest MetaBBO approaches
considering their computational efficiency, optimization per-
formance and learning capability, revealing current works’
significance and limitations. Subsequent in-depth analysis on
some core designs of MetaBBO: the neural network architec-
ture, optimization state feature extraction mechanism, training
problem distribution, and meta-objective design. These in-
sights offer practical guidelines for researchers and practition-
ers aiming to develop more effective and efficient MetaBBO
methods. At last, we propose several interesting and open-
ended future directions for MetaBBO research, encouraging
further exploration and innovation in this promising field.
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differential evolution,” in GECCO, 2023.

[166] C. L. Camacho-Villalón, M. Dorigo, and T. Stützle, “Pso-x: A
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APPENDIX

A. Baseline Selection Criteria

We conduct the proof-of-principle evaluation of several representative BBO and MetaBBO methods to provide community
some insights of MetaBBO method and metric designs. Therefore we select baselines in the empirical evaluation showcase
following two motivations:

• Since a large number of MetaBBO methods focus on bound-constrained single-objective numerical optimization and
existing MetaBBO methods are not capable across different problem types, we evaluate traditional BBO and MetaBBO
methods on single-objective numerical optimization testsuites as a showcase.

• To conduct a comprehensive evaluation, we attempt to cover all categories summarized in the paper, including different
meta tasks (AS, AC, SM and AG), different learning paradigm (RL, SL and NE) and different low-level BBO algorithm
classes (i.e., DE, PSO and ES). We did not include MetaBBO-ICL methods with LLMs because of their high time
cost and API fee. But we notice the concerns raised by reviewers about the in-depth analysis on LLM-aided MetaBBO,
therefore we add a classic MetaBBO-ICL method, OPRO [127], in the comparison in Section V, Part B, which shows
poor performance due to the weak optimization embedded in LLM and the long LLM conversation time cost.

Following the two motivations above, we adopted a recent single-objective numerical optimization benchmark MetaBox [32]
to evaluate the performance traditional EC algorithms and MetaBBO methods. For traditional EC algorithms, we select
algorithms from three mainstream EC classes for BBO: DE [73], PSO [206] and ES [207]. For each of the classes, we
choose one representative, highly cited and advanced algorithm as the representative, therefore for DE we select JADE [25],
for PSO we choose GLPSO [27] and for ES we integrate CMA-ES [28]. Further, we include recent and advanced MetaBBO
methods covering all four meta-tasks: for algorithm selection we adopt a recent RL-based method RL-DAS [40]. For algorithm
configuration, we include the RL-based robust operator selection method DE-DDQN [34] in MetaBox. Three hyper-parameter
optimization MetaBBO methods, RL-based LDE [37], RLEPSO [93] and NE-based LES [48], are included covering the three
mainstream EC classes DE, PSO and ES respectively. Besides, a recent advanced hyper-parameter optimization framework
GLEET [38] which could compatibly control both DE and PSO is also selected. For algorithm generation, a recent MetaBBO-
RL method SYMBOL [137] is included. For solution manipulation, we choose two MetaBBO-SL methods: the earliest work
RNN-OI [44] and a recent method GLHF [46]. For all baselines above we use the implementations integrated in MetaBox.
Besides, OPRO [127] as a MetaBBO-ICL solution manipulation method is also included in the revised paper.

B. Experimental Setup

In the paper, all baselines are tested on three single-objective numerical testsuites: 10D Synthetic Testsuite with 24 problem
instances, 10D Noisy Synthetic Testsuite with 24 problem instances and 12D Protein-Docking Testsuite with 280 problem
instances. The “easy” postfix indicates that 75% problem instances are used for the training of MetaBBO methods and the
rest 25% instances are taken as testing set. The “difficult” postfix on the contrary uses 25% for training and 75% for testing.
The maximal function evaluations of all baselines are 20,000 for Synthetic and Noisy Synthetic Testsuites, 1,000 for Protein-
Docking Testsuite. All baselines are trained for 1.5×106 learning steps and tested over 51 independent runs to ensure fairness.
Other baseline hyper-parameters follow the settings in MetaBox. The experiments are conducted on Intel(R) Xeon(R) Gold
6254 CPU with 64GB RAM and NVIDIA GeForce RTX 4090 GPU. More details of train-test instance split and baseline
settings can be found in the MetaBox repository. We hope this response could clear the reviewers’ concerns.

C. AEI Results

For evaluating more algorithms, we could have evaluated the AEI scores of additional traditional algorithms covering DE,
PSO, GA and ES on Synthetic and Protein-docking testsuites in Table II below, as well as the AEI of MetaBBO methods in
Table III.

D. Comparison on the Learning Capabilities

As a learning based paradigm, MetaBBO should also be evaluated using metrics that reflect its learning effectiveness. Next,
we evaluate the MetaBBO methods using the Meta Generalization Decay (MGD) and Meta Transfer Efficiency (MTE) from
MetaBox. By presenting the scores of MGD and MTE of these MetaBBO methods, the learning true learning abilities of
these MetaBBO methods could be in-depth discussed. We note that this learning ability testing procedure could be generalized
to other MetaBBO scenarios beyond single-objective optimization. We here use single-objective testsuites in MetaBox as a
showcase for our readers.
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TABLE II
THE AEI SCORES OF TRADITIONAL ALGORITHMS ON SYNTHETIC AND PROTEIN-DOCKING TESTSUITES. THE UNDERLINED ALGORITHMS ARE THE

ALGORITHMS PRESENTED IN THE PAPER.

DE JADE SHADE MadDE AMCDE PSO FIPSO sDMSPSO GLPSO EPSO GA AGA ES CMA-ES Sep-CMA-ES IPOP-CMA-ES

Synthetic 16.10 13.23 14.11 12.97 12.88 14.13 12.93 9.25 13.40 13.17 12.86 13.61 14.26 22.61 23.31 22.22

easy ±1.68 ±1.46 ±1.54 ±1.35 ±1.39 ±1.45 ±1.52 ±1.25 ±1.08 ±1.31 ±1.38 ±1.44 ±1.43 ±4.62 ±4.98 ±4.59

Synthetic 9.45 9.90 11.24 9.70 9.83 7.21 9.69 6.77 10.22 10.01 9.22 11.65 15.23 15.98 16.50 16.24

difficult ±1.12 ±1.19 ±1.42 ±1.25 ±1.12 ±0.95 ±1.24 ±0.89 ±1.15 ±1.14 ±1.06 ±1.20 ±1.36 ±2.88 ±2.29 ±2.58

Protein 0.82 0.95 0.96 1.00 0.94 0.84 0.87 1.13 1.19 1.09 1.08 1.13 0.90 0.93 0.94 0.94

easy ±0.03 ±0.03 ±0.03 ±0.04 ±0.02 ±0.03 ±0.02 ±0.04 ±0.04 ±0.03 ±0.02 ±0.03 ±0.03 ±0.04 ±0.04 ±0.04

Protein 0.76 0.93 0.89 0.86 0.86 0.84 0.86 0.85 1.05 1.02 1.02 1.09 0.88 0.92 0.94 0.93

difficult ±0.02 ±0.03 ±0.03 ±0.03 ±0.04 ±0.04 ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.02 ±0.04 ±0.04 ±0.04 ±0.04

TABLE III
THE AEI SCORES OF METABBO ALGORITHMS ON SYNTHETIC AND PROTEIN-DOCKING TESTSUITES.

RL-DAS DE-DDQN LDE RLEPSO LES GLEET SYMBOL RNN-OI GLHF OPRO

Synthetic 14.29 8.97 12.06 16.09 2.92 5.43 12.67 1.40 7.53 1.72

easy ±1.45 ±0.98 ±1.21 ±2.43 ±0.98 ±1.08 ±1.08 ±0.13 ±2.81 ±0.73

Synthetic 10.86 7.85 9.84 9.36 2.16 5.02 12.02 0.02 7.12 1.61

difficult ±1.19 ±0.82 ±1.09 ±1.39 ±0.82 ±1.15 ±1.15 ±0.01 ±1.38 ±1.33

Protein 0.99 0.71 0.98 1.03 1.11 1.21 0.99 1.00 1.13 0.22

easy ±0.03 ±0.02 ±0.03 ±0.03 ±0.04 ±0.03 ±0.04 ±0.03 ±0.03 ±0.01

Protein 0.91 0.70 0.90 1.02 0.95 1.01 0.91 0.98 1.01 0.22

difficult ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.02 ±0.04 ±0.05 ±0.02 ±0.01

1) Meta Generalization Decay: MGD measures the generalization performance of a MetaBBO method for unseen tasks.
Concretely, MetaBox trains two models for the MetaBBO method on two source suites (A and B) and test them on the target
suit B. We record the AEI scores of these two models on the target suit as AEIA and AEIB respectively. The MGD(A,B)
is computed as

MGD(A,B) = 100× (1− AEIA
AEIB

)%, (13)

A smaller MGD score indicates that the method generalizes well from A to B.

Synthetic Noisy
Synthetic

Protein
Docking

Synthetic
Noisy

Synthetic
Protein
Docking

0.000% 0.901% -

-14.766% 0.000% -

- - 0.000%

RL-DAS

Synthetic Noisy
Synthetic

Protein
Docking

0.000% 9.972% -2.564%

2.690% 0.000% -2.564%

-33.070% 3.989% 0.000%

DE-DDQN

Synthetic Noisy
Synthetic

Protein
Docking

0.000% -7.049% -0.006%

2.222% 0.000% -0.017%

-0.502% -7.006% 0.000%

LDE

Synthetic Noisy
Synthetic

Protein
Docking

0.000% -10.558% -0.026%

-0.126% 0.000% -0.023%

40.312% 4.824% 0.000%

RLEPSO

Synthetic Noisy
Synthetic

Protein
Docking

0.000% -5.231% 0.901%

-18.836% 0.000% 1.802%

-12.329% -1.846% 0.000%

LES

Synthetic Noisy
Synthetic

Protein
Docking

0.000% 20.868% 4.040%

3.631% 0.000% 9.091%

-5.762% 17.355% 0.000%

GLEET

Synthetic Noisy
Synthetic

Protein
Docking

0.000% 2.267% 3.306%

-7.366% 0.000% 9.091%

34.807% 8.060% 0.000%

SYMBOL

Synthetic Noisy
Synthetic

Protein
Docking

0.000% 6.211% -

-4.667% 0.000% -

- - 0.000%

RNN-OI

20

15

10

5

0

5

10

15

20

Fig. 10. MGD scores of baselines. The value at i-th row and j-th column is the MGD(i, j), with smaller value indicating better performance.

Fig. 10 shows the MGD plot of MetaBBO baselines, with GLHF omitted since it does not provide training codes. The ‘-’
indicates that the model fails to generalize to target testsuit. We can observe that: 1) RL-DAS and RNN-OI cannot be generalized
from Synthetic-10D to Protein Docking-12D due to their optimization state features are dimension-dependent, highlighting the
importance of optimization state design. 2) MetaBBO-NE methods (LES) achieves more robust generalization than MetaBBO-
RL (RL-DAS, DE-DDQN, LDE, RLEPSO, GLEET, SYMBOL) and MetaBBO-SL (RNN-OI) baselines, possible revealing
the learning effectiveness advantage of neuroevolution paradigm due to its global learning ability. However, neuroevolution
is exponentially resource-consuming as the neuron counts scale, implying a tradeoff between effectiveness and efficiency.
3) Larger models (e.g., GLEET with 3 Transformer layers) underperform smaller ones (e.g., DE-DDQN with a single MLP) in
the generalization evaluation, even though they outperform within the training distribution. Since the generalization performance
is closely tied to the model capacity and the data scale, further investigation into the scaling laws in MetaBBO is highly
anticipated.

2) Meta Transfer Efficiency: MTE score measures the transfer learning capability. For a MetaBBO method, its MTE from
a problem set A to B is computed as:

MTE(A,B) = 100× (1− Tfinetune

Tscratch
)%, (14)
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TABLE IV
MTE SCORES OF THE METABBO METHODS IN THE TRANSFER FROM SOURCE TESTSUITES TO TARGET TESTSUITES.

Source

Testsuites
Synthetic Noisy-Synthetic Protein-Docking

Target

Testsuites

Noisy

Synthetic

Protein

Docking
Synthetic

Protein

Docking
Synthetic

Noisy

Synthetic

RL-DAS fail - 1 - - -

DE-DDQN -9.5 1 -3.2 fail -1.41 -9.5

LDE -0.05 -0.17 0.19 -0.17 1 -0.05

RLEPSO fail -4.25 -0.39 -4.25 1 fail

LES -1.65 -0.05 fail -0.05 fail 1

GLEET 1 -0.05 fail -0.05 fail -0.39

SYMBOL -0.16 fail 0.97 -2.17 -0.05 fail

RNN-OI 1 - 0.01 - - -

where Tscratch is the learning steps used to attain best performance when training on B. Tfinetune is the learning steps used to
fine-tune a model trained on A to attain the same performance level. A larger MTE score indicates that the knowledge learned
in A can be easily transferred to solve B. Table IV presents the MTE scores of all baselines under each pair of source-target
problem collections, where ‘fail’ indicates the baseline can not be fine-tuned to achieve similar performance level on the target
problems. Results show that: 1) While many baselines highlight their transfer learning ability under some cases (e.g., GLEET:
Synthetic to Noisy-Synthetic), they show transfer limitations in other cases, suggesting room for improvement. 2) The overall
transferring performances across all baselines and problem collections are relatively noisy, making it difficult to determine
whether some transfer failures stem from the algorithm designs or the diversity of the problem collections. This opens up
a research opportunity to explore the relationship between problem diversity and generalization, as well as how to construct
“good” training set for MetaBBO.
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