
Seeking Multiple Solutions of Combinatorial
Optimization Problems: A Proof of Principle Study

Ting Huang, Yue-Jiao Gong and Jun Zhang
Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information

School of Computer Science and Engineering
South China University of Technology, Guangzhou 510006, China

gongyuejiao@gmail.com; junzhang@ieee.org

Abstract—Problems with multiple optimal solutions widely
exist in the real world. In some applications, it is required to
locate multiple optima. However, most studies are dedicated to
the continuous multi-solution optimization, while few works
contribute to the discrete multi-solution optimization. To
promote the multi-solution research in the discrete area, we
design a benchmark test suite for multi-solution traveling
salesman problems and propose two evaluation indicators.
Further, in order to solve the problems, the genetic algorithm
is incorporated with a niching technique defined in the discrete
space. The proposed algorithm is compared with an existing
algorithm. Experimental results demonstrate that the proposed
algorithm outperforms the compared algorithm concerning the
quality and diversity of obtained solutions.

Keywords—multi-solution traveling salesman problem,
multimodal optimization, genetic algorithm, neighborhood-based
niching strategy

I. INTRODUCTION
Combinatorial Optimization Problems (COPs) are a

class of discrete optimization problems that need to find an
optimal solution in a finite solution space according to some
selection criteria. Many COPs are known to be NP-hard,
such as the Traveling Salesman Problem (TSP). It is quite
difficult to solve them by deterministic algorithms,
especially when the solution space is large. In the past
decades, many evolutionary algorithms (EAs) have been
successfully developed to solve COPs [1-4], owing to their
non-deterministic search characteristic and powerful global
optimization ability. However, most studies focus on
locating one single optimal solution. But many practical
applications require to identify more than one optimal
solution, such as the navigation system and the robot path
planning. With a diverse solution set, the decision makers
can choose the most proper one according to their
preferences, or they can have alternatives in case of some
unexpected situations.

The area of finding multiple optima for a single problem
is generally known as multimodal optimization (MMO) or
multi-solution optimization, which has undergone intensive
studies in the past few years [5-8]. However, most studies
are conducted on the continuous MMO, whereas seldom
research is devoted to the discrete MMO. To extend the
MMO to the discrete optimization area, there are three main
issues required to be considered: (1) the baseline algorithms
that are suitable to deal with discrete MMO problems; (2)

the techniques to maintain multiple potential solutions in the
discrete problem space; (3) an appropriate benchmark test
suite. The first two are mainly considered by optimizer
developers, while the third one is a crucial factor for
evaluating the algorithm performance. In this paper, we
conduct a proof of principle study for addressing these three
issues, which are briefly introduced as follows.

The first issue regards the choice of an appropriate
baseline algorithm for encoding and evolving solutions in
the discrete problem space. Some EAs, such as Differential
Evolution [9], Particle Swarm Optimization [10], and I-
Ching divination EA [11, 12], use floating-point encoding
by nature, and hence they cannot solve discrete problems
directly. Other EAs, such as Genetic Algorithm (GA) [13,
14] and Ant Colony Optimization [15], are more suitable to
use an integer encoding scheme and then work in the
discrete or combinatorial space. Therefore, in this work, we
choose GA as our baseline algorithm. However, GA cannot
solve discrete MMO problems directly because it will
converge towards an optimum eventually. The convergence
is caused by the diversity loss.

Thus, the second issue focuses on preserving the
population diversity, which is crucial for the MMO. In the
continuous MMO, the primary methods to preserve
population diversity are niching techniques, such as
crowding [16, 17], speciation [18], and neighborhood
strategy [5]. Niching techniques limit solutions evolving
within the local space, which avoids the global convergence.
Along this light of consideration, we can incorporate the
niching strategies into a suitable baseline algorithm to obtain
diverse candidates simultaneously. Specifically, we develop
a neighborhood-based niching strategy in the discrete space
and then incorporate the strategy into GA to deal with
discrete MMO problems.

The third issue concerns the selection of the benchmark
suite of discrete MMO problems. Although the multi-
solution optimization of COPs is critical for many practical
applications, currently this area has received seldom
attention and lacked a standard test suite to evaluate the
related algorithms. The lack of an appropriate benchmark
test suite may hinder the research and development for the
discrete MMO area. To promote the development of this
area, in this paper, we develop a benchmark test suite for the
combinatorial MMO. Because TSP is the most popular and
representative COP, we take it as an example and design a
set of multi-solution TSP instances (MSTSPs). To our best
knowledge, there are several early MSTSP instances have
been reported [19, 20]. However, these instances either
contain too many optimal tours (e.g., 16 cities with 938
optima) or possess a small number of cities (fewer than 10

This work was supported by the National Natural Science Foundation
of China under Grants. 61502542, 61332002, and U1701267, and was also
supported by the Open Project Program of the State Key Laboratory of
Mathematical Engineering and Advanced Computing.

1212978-1-5386-9276-9/18/$31.00 c©2018 IEEE

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

cities), which are inappropriate and insufficient to be
utilized as a benchmark test suite. In this paper, we propose
a benchmark suite with 25 MSTSP instances that are
classified into three categories, i.e., the simple MSTSPs, the
geometry MSTSPs, and the composite MSTSPs. The
number of cities ranges from 9 to 66, and the number of
optima scales from 2 to 196.

The rest of this paper is organized as follows. Section II
formulates TSP. Section III describes the proposed 25
MSTSPs. The proposed algorithm is presented in Section
IV. Section V defines the experimental settings and reports
experimental results. Finally, the conclusion is drawn in
Section VI.

II. TRAVELING SALESMAN PROBLEM
Given a number of cities and the distance information

between each pair of them, a salesman visits each city only
once to construct a Hamilton path. The target of TSP is to
find the shortest Hamilton path. Mathematically, consider a
graph G = (V, E), where V = {1, 2, 3,…, N} is a set of cities
(denoted by the indices), and E ={(i, j) | i, j N, i j} is a
set of edges indicating the connection between cities i and j.
Each connection (i, j) has a weight value dij to measure the
distance between the two cities. Following the edge weight
type EUC_2D defined in [21], we round the distance to the
nearest integer.

The Hamilton path can be formulated as a permutation
for the city set. Thereafter, TSP is to find a shortest path in
all permutations. More precisely, we consider

1

() (1) () (1)
1

min ()
N

k k N
k

f d dπ π π ππ
−

+
=

= + (1)

where N is the number of cities and (k) is the kth element
of the permutation .

III. SUMMARY OF THE TEST SUITE
Our benchmark set includes 25 MSTSPs. They are

divided into three categories based on their design methods,
which are generally described below.

The first category (MSTSP1 - MSTSP6) consists of six
simple MSTSPs, whose cities are randomly generated. For
these instances, we obtain the ground-truth best solutions by
the brute-force search. However, since the solution space
increases exponentially with the increasing number of cities,
for relatively large-scale instances, it is impossible to
traverse all possible permutations considering the time
limitation. Consequently, in this category, the number of
cities ranges from 9 to 12. Besides, the number of optima
ranges from 2 to 13. As an example, the MSTSP1 are
plotted in Fig. 1, where the black circles represent cities and
the red lines constitute the optimal tour. Particularly, the
MSTSP1 has three optimal tours, each has been depicted in
a subgraph of Fig. 1. The length of each optimum is
displayed above the subgraph. It can be observed that the
three optima possess exactly the same length of 680, but
different tours.

The second category (MSTSP7 - MSTSP12) includes six
geometry MSTSPs. Unlike the first category that the
instances are randomly generated, now we utilize the
symmetrical geometry to construct MSTSPs. By designing
different geometric topologies, these instances can have

diverse numbers of optima. Thus, in MSTSP7 - MSTSP12,
the number of optima are between 4 and 196, while the
number of cities are between 10 and 15. To be specific,
different symmetrical geometries are used, including the
rectangle, the regular pentagon, and the regular hexagon.
Cities are located on vertexes of each geometry. Under
different geometries, the optima have significantly different
tours for each instance. We take MSTSP9 as an example,
which is drawn in Fig. 2. A regular hexagon is nested inside
a large rectangle, which generates four optimal tours. It can
be observed from Fig. 2 that the four tours possess totally
different topologies.

The third category (MSTSP13 - MSTSP25) is comprised
of 13 composite MSTSPs, which are relatively large-scale
instances. The composite MSTSPs are constructed with
some basic small-scale MSTSPs. Each small-scale MSTSP
is considered as a city cluster, and the city clusters are
distributed at different geometric locations in the composite
MSTSP. On the one hand, some city clusters possess diverse
sub-tours with equal lengths, and thus provide multiple
optimal tours for the composite MSTSPs. On the other hand,
the geometric distribution of city clusters provides
additional possibilities for the composite instances to have
multiple diverse solutions. Thus, to summarize, the diversity
of the optimal tours comes from both the intra-cluster
relationship between cities and the inter-cluster relationship
between city clusters. For MSTSP13 - MSTSP25, the
maximum city size is raised to 66, while the number of
optima ranges from 4 to 72. More specifically, the city
clusters can be designed with geometric locations (such as
the cases from MSTSP13 to MSTSP 16) or with randomly
generated locations (such as the cases from MSTSP17 to
MSTSP25). Moreover, concerning the inter-cluster
relationship, MSTSP13 and MSTSP14 possess a single
optimal tour for the city clusters, while the other composite
MSTSPs have multiple optimal tours among city clusters.
As an example, the MSTSP21 has two optimal inter-cluster
topologies, which are shown in the two sub-figures of Fig.
3(a). Besides, the instance has four city clusters, which are
labeled with A, B, C, and D, respectively, using a subscript
with the index of the optimal topology. If we zoom in one of
the city cluster (e.g., B1) to see more details, as shown in Fig.
3(b), the cluster has two different optimal intra-cluster
topologies. Similarly, the cluster B2, displayed in Fig. 3 (c),

Fig. 1. MSTSP1 with 9 cities and 3 optimal tours

Fig. 2. MSTSP9 with 10 cities and 4 optimal tours

IEEE Symposium Series on Computational Intelligence SSCI 2018 1213

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

possesses two distinct intra-cluster topologies with the equal
subtour length.

The above three categories contain 25 MSTSPs in total,
which are summarized in Table I, including the category
information, the index, the name, the number of cities, the
number of optima, and the optimal length. For more details,
please refer to the supplementary file and the source code of
the benchmark suite. They are available to download on the
Internet 1.

IV. THE NEIGHBORHOOD-BASED GENETIC ALGORITHM
To settle the proposed 25 MSTSPs, a neighborhood-

based genetic algorithm (NGA) is proposed. GA is a popular
optimizer to tackle TSP, for the easy implementation and
good search ability. The neighborhood-based strategy
restricts the search of neighborhood members within
respective local spaces, allowing locating diverse candidate
solutions simultaneously. Eventually, NGA can obtain
various solutions at the end of optimization. In the
following, we describe the details of NGA.

A. Overall Framework
To begin with, NGA initializes NP chromosomes and

evaluates their tour lengths. Next, the algorithm enters the
evolution loop. The neighborhood strategy is adopted to
divide the entire population into several groups and form a
mating pool eventually. Then, pairwise parents in the mating
pool execute partially mapped crossover (PMX) [23]. After
that, we mutate the chromosomes by reversing genomes
between two randomly selected positions, termed reverse
sequence mutation (RSM) [24]. Thus far, we obtain
offspring as well as their tour lengths. Afterwards, we select
chromosomes from the offspring to determine the parents of

1 https://github.com/GnauhGnit/MSTSP.

the next generation. The above procedures repeat until the
termination condition is met. When the algorithm
terminates, a post-processing method is applied to identify
the representative solutions of the final populations and

0 1000 2000

0

500

1000

1500

2000

2500

6767

A1

B1
C1

D1

0 1000 2000

0

500

1000

1500

2000

2500

6767

A2

B2
C2

D2

(a)

(b)

(c)

Fig. 3. MSTSP9 with 48 cities and 4 optimal tours

TABLE I. TEST INSTANCES OF MSTSPS

Category Index Name #City #Optima Optimal
length

Simple

MSTSP1 simple1_9 9 3 680

MSTSP2 simple2_10 10 4 1265

MSTSP3 simple3_10 10 13 832

MSTSP4 simple4_11 11 4 803

MSTSP5 simple5_12 12 2 754

MSTSP6 simple6_12 12 4 845

Geometry

MSTSP7 geometry1_10 10 56 130

MSTSP8 geometry2_12 12 110 1344

MSTSP9 geometry3_10 10 4 72

MSTSP10 geometry4_10 10 4 72

MSTSP11 geometry5_10 10 14 78

MSTSP12 geometry6_15 15 196 130

Composite

MSTSP13 composite1_28 28 70 3055

MSTSP14 composite2_34 34 16 3575

MSTSP15 composite3_22 22 72 9455

MSTSP16 composite4_33 33 64 8761

MSTSP17 composite5_35 35 10 9061

MSTSP18 composite6_39 39 20 23763

MSTSP19 composite7_42 42 20 14408

MSTSP20 composite8_45 45 20 10973

MSTSP21 composite9_48 48 4 6767

MSTSP22 composite10_55 55 9 10442

MSTSP23 composite11_59 59 10 24451

MSTSP24 composite12_60 60 36 9614

MSTSP25 composite13_66 66 26 9521

Algorithm 1 NGA
Input: A MMTSP test instance T, the population size NP,

the neighborhood size m, the crossover rate Pc, the
mutation ratio Pm, and the termination criterion.

Output: The representative solution set .
1: Parent Initialize(NP)
2: Evaluate(Parent)
3: While the termination criterion not satisfied do
4: MatingPool Neighborhood(Parent, m)
5: Offspring Crossover(MatingPool, “PMX”) /*

apply the PMX [23] with a probability Pc */
6: Offspring Mutation(Offspring, “RSM”) /*

apply the RSM [24] with a probability Pm */
7: Evaluate(Offspring)
8: Parent Selection(Offspring, m)
9: End While

10: Preserve (Parent, m)

1214 IEEE Symposium Series on Computational Intelligence SSCI 2018

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

output a solution set. The overall procedure is presented in
Algorithm 1.

B. Neighborhood Grouping Strategy
The neighborhood grouping strategy divides the entire

population based on the individual distances. As presented
in Algorithm 2, first, tmpParent, a copy of Parent, is
created. Then, the chromosome with the shortest tour is
identified as the neighborhood leader Leader. Subsequently,
members who are close to Leader more tend to form a
group. To this end, a similarity measure between solutions
of MSTSPs is required.

Note that the solution of an MSTSP is encoded as a
permutation, and hence it is meaningless to directly compare
the city indexes on the corresponding positions. Instead, the
adjacency information between cities is more important.
Therefore, we define the similarity measure based on the
common edges between two tours. Suppose i and j are two
permutations, while Φ(i) and Φ(j) denote their edge sets.
Then, the similarity between i and j is calculated as

() ()
(,) i j

i jS
N

π π
π π

Φ ∩ Φ
= (2)

where |·| denotes the number of edges in the intersection set.

After that, the similarity values between Leader and all
members are calculated. The calculated values are used to
sort tmpParent in an ascending order, obtaining sortParent.
The first m chromosomes of sortParent together form
NeighborGroup. In addition, we also consider the diversity
loss caused by the trap of the local optima. A diversity
enhancement approach is performed on NeighborGroup to
avoid the search getting into the local optima. Specifically,
if all the members of NeighborGroup are the same, we
reinitialized m-1 members, leaving one member unchanged.
Then, NeighborGroup is shuffled. When the members of
NeighborGroup are settled, they are added to MatingPool.
In the meantime, the newly added members are eliminated
from tmpParent. The above process is repeated until the set
tmpParent is empty.

C. Evolutionary Operations
The basic evolutionary operations of GA include

crossover, mutation, and selection, which are shown in the
lines 5 - 8 of Algorithm 1. The three operations are applied
within the same neighborhood group to avoid global
convergence. To be specific, crossover and mutation
operations are adopted with parent pairs of the same
neighborhood group. That is to say, most gene fragments of
offspring are inherited from the members of the same
neighborhood group, and hence the offspring and the
parents tends to be close to each other. Selection operation
keeps the superior and diverse solutions while discard the
others. For each child, the most similar parent of the
corresponding neighborhood group is identified. The length
values between the child and this parent are compared. If the
child is shorter, it will take the place of the chosen parent.

D. Post-processing Method
When the algorithm terminates, it will obtain NP

chromosomes, which correspond to NP solutions. However,
some of them are unnecessarily to be provided because of
redundancy or inferiority. Considering this, a post-
processing method is called to identify the representative

Algorithm 2 Neighborhood(Parent, m)
Output:

1:
The chromosome set MatingPool
tmpParent Parent

2: MatingPool = ∅
3: While tmpParent ∅ do
4: Leader FindBest(tmpParent)
5: CalculateShareDist(tmpParent, Leader)
6: sortParent Sort(tmpParent.shareDist,

“ascending”)
7: NeighborGroup sortParent [1, …., m]
8: If all the members of NeighborGroup are the

same then
9: DiversityEnhancement(NeighborGroup)

10: End If
11: Shuffle(NeighborGroup)
12: MatingPool = MatingPool + NeighborGroup
13: tmpParent = tmpParent - NeighborGroup
14: End While

Algorithm 3 Preserve(Parent, m)
Output: The representative solution set .

1: ShortestLength SelectBestFitness(NeighborGroup)
/* return the best fitness value. */

2: thrLength ShortestLength·(1 +)
3: = ∅
4: For i = 1 to NP/m do
5: NeighborGroup (Parent[(i-1)*m + 1, …, i*m])
6: For every e NeighborGroup do
7: If Exsit(, e) then
8: continue
9: End If

10: If e.Length == ShortestLength then
11: s /* preserve the chromosome best

so far */
12: Else If e.Length thrLength then
13: maxSim 0
14: For every o do
15: If S(e, o) > maxSim then
16: maxSim S(e, o)
17: End If
18: End For
19: If maxSim < thrSim then
20: e /* preserve diverse

chromosome*/
21: End If
22: End If
23: End For
24: End For

IEEE Symposium Series on Computational Intelligence SSCI 2018 1215

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

ones and then offer them in the final output set. The
procedure is described in Algorithm 3. To begin with, find
the solution with the shortest length and record the length as
ShortestLength. Then, a selection threshold thrLength is
defined as an -relaxion of the ShortestLength. Afterwards,
we deal with the NP solutions one by one: we first check
whether they have already existed in the final output set . If
yes, the redundant solutions will be discarded. Otherwise,
we allow a solution to join under two conditions: 1) its
length is exactly the same as the length of so far optima
(shown in the lines 10 - 11 of Algorithm 3), and 2) its
length is shorter than thrLength and is distinguished from
the members in , which is controlled by thrSim (described
in the lines 12 - 22 of Algorithm 3). Here, is set to 0.01
and thrSim is 2*ln(N)/N.

V. EXPERIMENTAL AND ANALYSIS
In this section, the experimental setups, including the

benchmark suite, the comparison algorithms, and parameter
setting are presented in Section V-A. Then, the performance
measures are described in Section V-B. At last, Section V-C
reports the experimental results.

A. Experimental Setup
To evaluate the performance of discrete MMO

algorithms, we adopt the proposed benchmark suite of 25
MSTSPs, which are described in Section III. Existing
discrete MMO algorithms include niching ant colony system
(NACS) [20] and multi-chromosomal cramping based
genetic algorithm (MCC-GA) [19]. NACS incorporates a
diversity-preserving mechanism into an ant colony system
to solve MSTSPs. By the diversity-preserving mechanism,
multiple pheromone matrices are preserved, which guide the
search of ants towards distinct directions, and thus enables
the algorithm to obtain diverse solutions in parallel. MCC-
GA encodes l solutions into a chromosome. The population
search is devoted to finding exact l solutions. The value of l
should be given in advance. However, it is difficult to
appropriately set without any prior knowledge of test
instances. Therefore, as a proof of principle study, we
investigate the performance of NGA and NACS on the
proposed test suite.

The parameters of the NGA are empirically set:
crossover rate Pc = 0.9, mutation rate Pm = 0.1, and
neighborhood size m = 6. The parameters of NACS are set
according to the corresponding publication [20]. The size of
population is set to 150. All the algorithms terminate when
the given maximum fitness evaluations (MaxFEs) are
exhausted. The MaxFEs of 25 MSTSPs has two settings,
which are listed in Table II. The algorithm should run 50
times independently to obtain the statistical results.

B. Performance Measures
1) Identification of the Optimal Tours

Each of the above instances has a set of ground-truth
optimal solutions, denoted as . The aim of an optimization
algorithm is to locate all optima. For evaluation, we need
first compare the solution set returned by the algorithm
with the ground truths to identify the optimal tours found by
the algorithm by utilizing Eq. (2). A solution is considered
to be optimal as long as its similarity with the one of
ground-truth solutions equals to 1.

1) F Measure
Typically, an optimization algorithm will provide a final

solution set when they meet the termination condition.
However, the solution set may contain many inferior and
redundant solutions. To quantify the quality of the solution
set, we introduce F , which is widely used in pattern
recognition and information retrieval, as a measure. F is a
comprehensive indicator for accessing the precision value P
and the recall value R of obtained solutions. P is the fraction
of the obtained solutions that are optimal solutions:

TPP
TP FP

=
+

 (3)

where TP is the number of optimal solutions in , and FP is
the number of non-optimal solutions in . R is the fraction
of the ground-truth solutions that are successfully located:

TPR
TP FN

=
+

 (4)

where FN is the number of optimal solutions that the
algorithm misses. Actually, the sum of TP and FN is the
number of total desired solutions in the benchmark.

Based on the precision and recall, F [25] is calculated as
2

2

(1) P RF
P Rβ

β
β
+ ⋅ ⋅=

⋅ +
 (5)

When is set to 1, it assigns the same importance to both P
and R. However, for test instance with numerous optima, it
is more important to locate the most representative ones
than to locate all of them. So that we set 2 to 0.3 to magnify
the effect of precision in evaluating the solutions. Besides,
P, R, and F are real values between 0 and 1. Ideally, P
equals to 1 when all the solutions offered by the algorithm
are optimal; R meets 1 when all the ground-truth solutions
are located by the algorithm; and subsequently, F achieves
1 when the values of P and R both equal to 1.

To make a further explanation, we take MSTSP9 with 4
optima as an example and compare with two different
algorithms A and B. The algorithm A offers 100 solutions,
whereas the algorithm B provides only 4 representative
solutions. We suppose that these two algorithms
successfully locate all the ground-truth solutions. It is
obvious that the solution quality obtained by B is better than
that obtained by A, since B provides only necessary
solutions while A has redundant and inferior solutions. In
the following, we give a quantitative description. For
algorithm A, it has TP = 4, FP = 96, and FN = 0. Therefore,
we can obtain P = 0.04 and R = 1 according to Eqs. (3) and
(4). For B, it has TP = 4, FP = 0, and FN = 0 according to
Eqs. (3) and (4). Therefore, we can have P = 1 and R = 1. In
summary, based on Eq. (5), F value of A is about 0.051,
while that of B is 1. From this perspective, the conclusion is
consistent with the previous intuition.

2) Diversity Indicator

TABLE II. MAXFES APPLIED FOR 25 MSTSP INSTANCES

MSTSP instances MaxFEs

MSTSP1 - MSTSP12 6.00E+04

MSTSP13 - MSTSP25 1.20E+06

1216 IEEE Symposium Series on Computational Intelligence SSCI 2018

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

Diversity indicator (DI) is another essential measure for
evaluating the algorithm performance. When algorithms fail
to locate any desired solutions, their F values are all zero.
In these cases, the DI helps to further differentiate the
performance of different algorithms. Inspired by the
evolutionary multi-objective optimization area where the
algorithm also provides a solution set that needs to be
evaluated [22], DI measures the diversity of based on the
convergence of the solutions towards different optimal
solutions in the ground-truth set . To be specific, DI is
defined based on the average maximum similarity between
the obtained solutions and the ground-truth solutions, which
is calculated as

1,...,| |1
max (,)

DI(,)
i jji

S p s
=== (6)

where pi is the ith permutation of , sj
 is jth permutation of

, and S(pi, sj) is the similarity between the permutations pi
and sj using Eq.(1).

C. Simulation Results
The F and DI obtained by NACS and NGA are

compared in Table III and Table IV. Better results are
marked in boldface. From Table III, we find that NGA are
superior to NACS on 18 out of 25 test instances in terms of
F . However, for the last seven test instances (MSTSP19 -
MSTSP25), they both get nearly zero F values, which
indicates they fail to find any satisfactory solution in the
MSTSPs with relatively large-scale cities. The observations
show that the MSTSP instances with relatively large-scale
cities pose a challenge to discrete MMO algorithms.

DI is presented in Table IV. The higher DI implies that
the obtained solutions are more diverse. In Table IV, NGA
performs better on 17 out of 25 test instances concerning DI.
For the simple MSTSPs and the geometry MSTSPs, i.e.,
from MSTSP1 to MSTSP12, NGA is always the winner
except for MSTSP5. For the composite MSTSPs (MSTSP13
- MSTSP25), NGA performs better than NACS on about
half test instances, 6 out of 13. The DI values of NGA
degrade along with the number of cities increasing. The
observations imply that the neighborhood-based search of
NGA facilitates the population diversity, but it is inadequate
for relative large-scale MSTSPs.

To further investigate the significant effect with respect
of F and DI, we also conduct the Wilcoxon rank sum test at
significant level = 0.05. The results are listed in Table V.
From the table, we can conclude that NGA is significantly
better than NACS concerning F on 16 out of 25 instances,
while they tie on 8 test instances. As to another indicator,
DI, NGA is significantly better than NACS on 17 out of 25
instances, while NGA loses on another 8 test instances. The
overall significance test results point out that the NGA
outperforms in terms of both solution quality and solution
diversity.

VI. CONCLUSION
This paper makes a preliminary study to extend the

MMO into combinatorial area. To deal with combinatorial
MMO problems, we incorporate a neighborhood-based
strategy into GA to obtain diverse solutions. The GA
facilitates global search to obtain the optimal solution, while

the neighborhood-based strategy contributes to maintaining
population diversity to locate potential candidates in
parallel. Moreover, to evaluate performance of the
combinatorial MMO algorithm, we propose a benchmark
suite of 25 MSTSPs designed by three different methods.
Furthermore, the proposed NGA and the compared NACS
are utilized to solve 25 MSTSPs. We adopt two indicators to
compare their performance. F are adospted to
comprehensively assess the precision and recall values of
the returned solutions, while DI measures the diversity and
convergence of the obtained solutions. It is experimentally
verified that NGA can achieve a competitive performance

TABLE III. F OF NACS AND NGA

Instance MSTSP1 MSTSP2 MSTSP3 MSTSP4 MSTSP5

NACS 0.684 0.804 0.497 0.724 0.989

NGA 0.973 0.959 0.935 0.932 0.846

Instance MSTSP6 MSTSP7 MSTSP8 MSTSP9 MSTSP10

NACS 0.643 0.125 0.137 0.768 0.813

NGA 0.877 0.769 0.578 0.974 0.969

Instance MSTSP11 MSTSP12 MSTSP13 MSTSP14 MSTSP15

NACS 0.459 0.090 0.025 0.087 0.004

NGA 0.949 0.331 0.096 0.172 0.416

Instance MSTSP16 MSTSP17 MSTSP18 MSTSP19 MSTSP20

NACS 0.000 0.000 0.000 0.000 0.000

NGA 0.054 0.044 0.031 0.007 0.000

Instance MSTSP21 MSTSP22 MSTSP23 MSTSP24 MSTSP25

NACS 0.012 0.000 0.000 0.000 0.000

NGA 0.000 0.000 0.000 0.000 0.000

TABLE IV. DI OF NACS AND NGA

Instance MSTSP1 MSTSP2 MSTSP3 MSTSP4 MSTSP5

NACS 0.788 0.894 0.757 0.809 0.983

NGA 0.980 0.972 0.957 0.947 0.916

Instance MSTSP6 MSTSP7 MSTSP8 MSTSP9 MSTSP10

NACS 0.843 0.566 0.652 0.820 0.850

NGA 0.943 0.869 0.838 0.975 0.969

Instance MSTSP11 MSTSP12 MSTSP13 MSTSP14 MSTSP15

NACS 0.758 0.732 0.752 0.876 0.744

NGA 0.963 0.809 0.792 0.844 0.847

Instance MSTSP16 MSTSP17 MSTSP18 MSTSP19 MSTSP20

NACS 0.680 0.765 0.671 0.675 0.745

NGA 0.783 0.803 0.704 0.699 0.671

Instance MSTSP21 MSTSP22 MSTSP23 MSTSP24 MSTSP25

NACS 0.773 0.713 0.671 0.724 0.725

NGA 0.628 0.409 0.344 0.319 0.270

TABLE V. THE SIGNIFICANT RESULTS FOR NGA AND NACS

Wilcoxon rank sum test F DI

NGA vs. NACS
(significantly worse than/similar/significantly better than) 1/8/16 8/0/1

IEEE Symposium Series on Computational Intelligence SSCI 2018 1217

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

concerning with F and DI on most MSTSPs. However, they
both fail to obtain any desired solutions on the MSTSP
instances with large city size.

In the future work, we will improve NGA to work out
the MSTSPs with large city size. In addition, we attempt to
design more discrete MMO test instances to supplement the
discrete benchmark.

REFERENCES
[1] K. Dorling, J. Heinrichs, G. G. Messier and S. Magierowski, “Vehicle

routing problems for drone delivery,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70-85, Jan. 2017.

[2] X. Cai, Y. Li, Z. Fan, and Q. Zhang, “An external archive guided
multiobjective evolutionary algorithm based on decomposition for
combinatorial optimization,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 4, pp. 508–523, Aug. 2015.

[3] C. Patvardhan, S. Bansal, and A. Srivastav, “Quantum-inspired
evolutionary algorithm for difficult knapsack problems,” Memetic
Computing, vol. 7, no. 2, pp. 135–155, Jun. 2015.

[4] I.-D. Psychas, E. Delimpasi, and Y. Marinakis, “Hybrid evolutionary
algorithms for the Multiobjective Traveling Salesman Problem,”
Expert Systems with Applications, vol. 42, no. 22, pp. 8956–8970,
Dec. 2015.

[5] B.-Y. Qu, P. N. Suganthan, and J.-J. Liang, “Differential evolution
with neighborhood mutation for multimodal optimization,” IEEE
Transactions on Evolutionary Computation, vol. 16, no. 5, pp. 601–
614, Oct. 2012.

[6] Y.-J. Gong, J. Zhang, and Y. Zhou, “Learning multimodal parameters:
A bare-bones niching differential evolution approach,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no.
99, pp. 1–16, 2017.

[7] X. Li, “Niching without niching parameters: Particle swarm
optimization using a ring topology,” IEEE Transactions on
Evolutionary Computation, vol. 14, no. 1, pp. 150–169, Feb. 2010.

[8] Y.-H. Zhang, Y.-J. Gong, H.-X. Zhang, T.-L. Gu, and J. Zhang,
“Toward fast niching evolutionary algorithms: A locality sensitive
hashing-based approach,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 3, pp. 347–362, Jun. 2017.

[9] K. Price, “Differential evolution: a fast and simple numerical
optimizer,” in 1996 Biennial Conference of the North American Fuzzy
Information Processing Society, 1996, Jun 1996, pp. 524–527.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE International Conference on Neural Networks,
1995, vol. 4, pp. 1942–1948.

[11] C. L. P. Chen, T. Zhang, L. Chen, and S. C. Tam, “I-Ching divination
evolutionary algorithm and its convergence analysis,” IEEE
Transactions on Cybernetics, vol. 47, no. 1, pp. 2–13, Jan. 2017.

[12] T. Zhang, C. L. P. Chen, L. Chen, X. Xu, and B. Hu, “Design of
highly nonlinear substitution boxes based on I-Ching operators,”
IEEE Transactions on Cybernetics, pp. 1–10, 2018.

[13] J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor,
MI: Univ. of Michigan Press, 1975

[14] Y. J. Gong et al., “Genetic learning particle swarm optimization,”
IEEE Transactions on Cybernetics, vol. 46, no. 10, pp. 2277–2290,
2016.

[15] T. Liao, K. Socha, M. A. M. de Oca, T. Stützle, and M. Dorigo, “Ant
colony optimization for mixed-variable optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503–
518, Aug. 2014

[16] S. W. Mahfoud, “Crowding and preselection revisited,” in Parallel
problem solving from nature 2, R. Manner and B. Manderick, Eds. ¨
Amsterdam: North-Holland, 1992, pp. 27–36.

[17] O. Mengsheol and D. Goldberg, “Probabilistic crowding: Deterministic
crowding with probabilistic replacement,” in Proceedings of Genetic
and Evolutionary Computation, Jul. 1999, pp. 409–416.

[18] J. P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species
conserving genetic algorithm for multimodal function optimization,”
Evolutionary Computation, vol. 10, pp. 207-234, Sep. 2002.

[19] S. Ronald, “Finding multiple solutions with an evolutionary
algorithm,” in Proceedings of IEEE International Conference on
Evolutionary Computation, Perth, WA, Australia, 1995, vol. 2, pp.
641–646 vol.2.

[20] X.-C. Han, H.-W. Ke, Y.-J. Gong, et al., “Multimodal optimization of
traveling salesman problem: A niching ant colony system,” in
Proceedings of Genetic and Evolutionary Computation Conference,
2018.

[21] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376-384, 1991.

[22] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 117–132, Apr. 2003.

[23] J. Lingle Robert, “Alleles, loci and the traveling salesman problem,” in
Proceedings of International Conference on Genetic Algorithms and
their Applications, vol. 12, no. 92, pp. 154–159, 1985.

[24] O. Abdoun, J. Abouchabaka, and C. Tajani, “Analyzing the
performance of mutation operators to solve the travelling salesman
problem,” International Journal of Emerging Sciences, vol. 2, no. 1,
2012.

[25] P. Flach and M. Kull, “Precision-Recall-Gain Curves: PR analysis
done right,” in Advances in Neural Information Processing Systems
28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett, Eds. Curran Associates, Inc., 2015, pp. 838–846.

1218 IEEE Symposium Series on Computational Intelligence SSCI 2018

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 14,2025 at 08:27:23 UTC from IEEE Xplore. Restrictions apply.

