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Abstract—Problems with multiple optimal solutions widely 
exist in the real world. In some applications, it is required to 
locate multiple optima. However, most studies are dedicated to 
the continuous multi-solution optimization, while few works 
contribute to the discrete multi-solution optimization. To 
promote the multi-solution research in the discrete area, we 
design a benchmark test suite for multi-solution traveling 
salesman problems and propose two evaluation indicators. 
Further, in order to solve the problems, the genetic algorithm 
is incorporated with a niching technique defined in the discrete 
space. The proposed algorithm is compared with an existing 
algorithm. Experimental results demonstrate that the proposed 
algorithm outperforms the compared algorithm concerning the 
quality and diversity of obtained solutions.  

Keywords—multi-solution traveling salesman problem, 
multimodal optimization, genetic algorithm, neighborhood-based 
niching strategy 

I. INTRODUCTION 
Combinatorial Optimization Problems (COPs) are a 

class of discrete optimization problems that need to find an 
optimal solution in a finite solution space according to some 
selection criteria. Many COPs are known to be NP-hard, 
such as the Traveling Salesman Problem (TSP). It is quite 
difficult to solve them by deterministic algorithms, 
especially when the solution space is large. In the past 
decades, many evolutionary algorithms (EAs) have been 
successfully developed to solve COPs [1-4], owing to their 
non-deterministic search characteristic and powerful global 
optimization ability. However, most studies focus on 
locating one single optimal solution. But many practical 
applications require to identify more than one optimal 
solution, such as the navigation system and the robot path 
planning. With a diverse solution set, the decision makers 
can choose the most proper one according to their 
preferences, or they can have alternatives in case of some 
unexpected situations.  

The area of finding multiple optima for a single problem 
is generally known as multimodal optimization (MMO) or 
multi-solution optimization, which has undergone intensive 
studies in the past few years [5-8]. However, most studies 
are conducted on the continuous MMO, whereas seldom 
research is devoted to the discrete MMO. To extend the 
MMO to the discrete optimization area, there are three main 
issues required to be considered: (1) the baseline algorithms 
that are suitable to deal with discrete MMO problems; (2) 

the techniques to maintain multiple potential solutions in the 
discrete problem space; (3) an appropriate benchmark test 
suite. The first two are mainly considered by optimizer 
developers, while the third one is a crucial factor for 
evaluating the algorithm performance. In this paper, we 
conduct a proof of principle study for addressing these three 
issues, which are briefly introduced as follows. 

The first issue regards the choice of an appropriate 
baseline algorithm for encoding and evolving solutions in 
the discrete problem space. Some EAs, such as Differential 
Evolution [9], Particle Swarm Optimization [10], and I-
Ching divination EA [11, 12], use floating-point encoding 
by nature, and hence they cannot solve discrete problems 
directly. Other EAs, such as Genetic Algorithm (GA) [13, 
14] and Ant Colony Optimization [15], are more suitable to 
use an integer encoding scheme and then work in the 
discrete or combinatorial space. Therefore, in this work, we 
choose GA as our baseline algorithm. However, GA cannot 
solve discrete MMO problems directly because it will 
converge towards an optimum eventually. The convergence 
is caused by the diversity loss.  

Thus, the second issue focuses on preserving the 
population diversity, which is crucial for the MMO. In the 
continuous MMO, the primary methods to preserve 
population diversity are niching techniques, such as 
crowding [16, 17], speciation [18], and neighborhood 
strategy [5]. Niching techniques limit solutions evolving 
within the local space, which avoids the global convergence. 
Along this light of consideration, we can incorporate the 
niching strategies into a suitable baseline algorithm to obtain 
diverse candidates simultaneously. Specifically, we develop 
a neighborhood-based niching strategy in the discrete space 
and then incorporate the strategy into GA to deal with 
discrete MMO problems. 

The third issue concerns the selection of the benchmark 
suite of discrete MMO problems. Although the multi-
solution optimization of COPs is critical for many practical 
applications, currently this area has received seldom 
attention and lacked a standard test suite to evaluate the 
related algorithms. The lack of an appropriate benchmark 
test suite may hinder the research and development for the 
discrete MMO area. To promote the development of this 
area, in this paper, we develop a benchmark test suite for the 
combinatorial MMO. Because TSP is the most popular and 
representative COP, we take it as an example and design a 
set of multi-solution TSP instances (MSTSPs). To our best 
knowledge, there are several early MSTSP instances have 
been reported [19, 20]. However, these instances either 
contain too many optimal tours (e.g., 16 cities with 938 
optima) or possess a small number of cities (fewer than 10 
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cities), which are inappropriate and insufficient to be 
utilized as a benchmark test suite. In this paper, we propose 
a benchmark suite with 25 MSTSP instances that are 
classified into three categories, i.e., the simple MSTSPs, the 
geometry MSTSPs, and the composite MSTSPs. The 
number of cities ranges from 9 to 66, and the number of 
optima scales from 2 to 196.  

The rest of this paper is organized as follows. Section II 
formulates TSP. Section III describes the proposed 25 
MSTSPs. The proposed algorithm is presented in Section 
IV. Section V defines the experimental settings and reports 
experimental results. Finally, the conclusion is drawn in 
Section VI.  

II. TRAVELING SALESMAN PROBLEM  
Given a number of cities and the distance information 

between each pair of them, a salesman visits each city only 
once to construct a Hamilton path. The target of TSP is to 
find the shortest Hamilton path. Mathematically, consider a 
graph G = (V, E), where V = {1, 2, 3,…, N} is a set of cities 
(denoted by the indices), and E ={(i, j) | i, j  N, i  j} is a 
set of edges indicating the connection between cities i and j. 
Each connection (i, j) has a weight value dij to measure the 
distance between the two cities. Following the edge weight 
type EUC_2D defined in [21], we round the distance to the 
nearest integer.  

The Hamilton path can be formulated as a permutation  
for the city set. Thereafter, TSP is to find a shortest path in 
all permutations. More precisely, we consider  

1

( ) ( 1) ( ) (1)
1

min  ( )
N

k k N
k

f d dπ π π ππ
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+
=
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where N is the number of cities and (k) is the kth element 
of the permutation .  

III. SUMMARY OF THE TEST SUITE 
Our benchmark set includes 25 MSTSPs. They are 

divided into three categories based on their design methods, 
which are generally described below.  

The first category (MSTSP1 - MSTSP6) consists of six 
simple MSTSPs, whose cities are randomly generated. For 
these instances, we obtain the ground-truth best solutions by 
the brute-force search. However, since the solution space 
increases exponentially with the increasing number of cities, 
for relatively large-scale instances, it is impossible to 
traverse all possible permutations considering the time 
limitation. Consequently, in this category, the number of 
cities ranges from 9 to 12. Besides, the number of optima 
ranges from 2 to 13. As an example, the MSTSP1 are 
plotted in Fig. 1, where the black circles represent cities and 
the red lines constitute the optimal tour. Particularly, the 
MSTSP1 has three optimal tours, each has been depicted in 
a subgraph of Fig. 1. The length of each optimum is 
displayed above the subgraph. It can be observed that the 
three optima possess exactly the same length of 680, but 
different tours. 

The second category (MSTSP7 - MSTSP12) includes six 
geometry MSTSPs. Unlike the first category that the 
instances are randomly generated, now we utilize the 
symmetrical geometry to construct MSTSPs. By designing 
different geometric topologies, these instances can have 

diverse numbers of optima. Thus, in MSTSP7 - MSTSP12, 
the number of optima are between 4 and 196, while the 
number of cities are between 10 and 15. To be specific, 
different symmetrical geometries are used, including the 
rectangle, the regular pentagon, and the regular hexagon. 
Cities are located on vertexes of each geometry. Under 
different geometries, the optima have significantly different 
tours for each instance. We take MSTSP9 as an example, 
which is drawn in Fig. 2. A regular hexagon is nested inside 
a large rectangle, which generates four optimal tours. It can 
be observed from Fig. 2 that the four tours possess totally 
different topologies.  

The third category (MSTSP13 - MSTSP25) is comprised 
of 13 composite MSTSPs, which are relatively large-scale 
instances. The composite MSTSPs are constructed with 
some basic small-scale MSTSPs. Each small-scale MSTSP 
is considered as a city cluster, and the city clusters are 
distributed at different geometric locations in the composite 
MSTSP. On the one hand, some city clusters possess diverse 
sub-tours with equal lengths, and thus provide multiple 
optimal tours for the composite MSTSPs. On the other hand, 
the geometric distribution of city clusters provides 
additional possibilities for the composite instances to have 
multiple diverse solutions. Thus, to summarize, the diversity 
of the optimal tours comes from both the intra-cluster 
relationship between cities and the inter-cluster relationship 
between city clusters. For MSTSP13 - MSTSP25, the 
maximum city size is raised to 66, while the number of 
optima ranges from 4 to 72. More specifically, the city 
clusters can be designed with geometric locations (such as 
the cases from MSTSP13 to MSTSP 16) or with randomly 
generated locations (such as the cases from MSTSP17 to 
MSTSP25). Moreover, concerning the inter-cluster 
relationship, MSTSP13 and MSTSP14 possess a single 
optimal tour for the city clusters, while the other composite 
MSTSPs have multiple optimal tours among city clusters. 
As an example, the MSTSP21 has two optimal inter-cluster 
topologies, which are shown in the two sub-figures of Fig. 
3(a). Besides, the instance has four city clusters, which are 
labeled with A, B, C, and D, respectively, using a subscript 
with the index of the optimal topology. If we zoom in one of 
the city cluster (e.g., B1) to see more details, as shown in Fig. 
3(b), the cluster has two different optimal intra-cluster 
topologies. Similarly, the cluster B2, displayed in Fig. 3 (c), 

 
Fig. 1. MSTSP1 with 9 cities and 3 optimal tours 

 

Fig. 2. MSTSP9 with 10 cities and 4 optimal tours 
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possesses two distinct intra-cluster topologies with the equal 
subtour length.  

The above three categories contain 25 MSTSPs in total, 
which are summarized in Table I, including the category 
information, the index, the name, the number of cities, the 
number of optima, and the optimal length. For more details, 
please refer to the supplementary file and the source code of 
the benchmark suite. They are available to download on the 
Internet 1.  

IV. THE NEIGHBORHOOD-BASED GENETIC ALGORITHM  
To settle the proposed 25 MSTSPs, a neighborhood-

based genetic algorithm (NGA) is proposed. GA is a popular 
optimizer to tackle TSP, for the easy implementation and 
good search ability. The neighborhood-based strategy 
restricts the search of neighborhood members within 
respective local spaces, allowing locating diverse candidate 
solutions simultaneously. Eventually, NGA can obtain 
various solutions at the end of optimization. In the 
following, we describe the details of NGA.  

A. Overall Framework  
To begin with, NGA initializes NP chromosomes and 

evaluates their tour lengths. Next, the algorithm enters the 
evolution loop. The neighborhood strategy is adopted to 
divide the entire population into several groups and form a 
mating pool eventually. Then, pairwise parents in the mating 
pool execute partially mapped crossover (PMX) [23]. After 
that, we mutate the chromosomes by reversing genomes 
between two randomly selected positions, termed reverse 
sequence mutation (RSM) [24]. Thus far, we obtain 
offspring as well as their tour lengths. Afterwards, we select 
chromosomes from the offspring to determine the parents of 

                                                           
1 https://github.com/GnauhGnit/MSTSP.  

the next generation. The above procedures repeat until the 
termination condition is met. When the algorithm 
terminates, a post-processing method is applied to identify 
the representative solutions of the final populations and 
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Fig. 3. MSTSP9 with 48 cities and 4 optimal tours 

TABLE I. TEST INSTANCES OF MSTSPS

Category Index Name #City #Optima Optimal 
length 

Simple 

MSTSP1 simple1_9 9 3 680 

MSTSP2 simple2_10 10 4 1265 

MSTSP3 simple3_10 10 13 832 

MSTSP4 simple4_11 11 4 803 

MSTSP5 simple5_12 12 2 754 

MSTSP6 simple6_12 12 4 845 

Geometry

MSTSP7 geometry1_10 10 56 130 

MSTSP8 geometry2_12 12 110 1344 

MSTSP9 geometry3_10 10 4 72 

MSTSP10 geometry4_10 10 4 72 

MSTSP11 geometry5_10 10 14 78 

MSTSP12 geometry6_15 15 196 130 

Composite

MSTSP13 composite1_28 28 70 3055 

MSTSP14 composite2_34 34 16 3575 

MSTSP15 composite3_22 22 72 9455 

MSTSP16 composite4_33 33 64 8761 

MSTSP17 composite5_35 35 10 9061 

MSTSP18 composite6_39 39 20 23763 

MSTSP19 composite7_42 42 20 14408 

MSTSP20 composite8_45 45 20 10973 

MSTSP21 composite9_48 48 4 6767 

MSTSP22 composite10_55 55 9 10442 

MSTSP23 composite11_59 59 10 24451 

MSTSP24 composite12_60 60 36 9614 

MSTSP25 composite13_66 66 26 9521 

Algorithm 1 NGA 
Input: A MMTSP test instance T, the population size NP, 

the neighborhood size m, the crossover rate Pc, the 
mutation ratio Pm, and the termination criterion. 

Output: The representative solution set .  
1: Parent  Initialize(NP)   
2: Evaluate(Parent) 
3: While the termination criterion not satisfied do 
4: MatingPool  Neighborhood(Parent, m)   
5: Offspring  Crossover(MatingPool, “PMX”) /* 

apply the PMX [23] with a probability Pc */ 
6: Offspring  Mutation(Offspring, “RSM”) /* 

apply the RSM [24] with a probability Pm */ 
7: Evaluate(Offspring) 
8: Parent  Selection(Offspring, m)  
9: End While 

10:  Preserve (Parent, m)  
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output a solution set. The overall procedure is presented in 
Algorithm 1. 

B. Neighborhood Grouping Strategy  
The neighborhood grouping strategy divides the entire 

population based on the individual distances. As presented 
in Algorithm 2, first, tmpParent, a copy of Parent, is 
created. Then, the chromosome with the shortest tour is 
identified as the neighborhood leader Leader. Subsequently, 
members who are close to Leader more tend to form a 
group. To this end, a similarity measure between solutions 
of MSTSPs is required.  

Note that the solution of an MSTSP is encoded as a 
permutation, and hence it is meaningless to directly compare 
the city indexes on the corresponding positions. Instead, the 
adjacency information between cities is more important. 
Therefore, we define the similarity measure based on the 
common edges between two tours. Suppose i and j are two 
permutations, while Φ( i ) and Φ( j) denote their edge sets. 
Then, the similarity between i and j is calculated as  

( ) ( )
( , ) i j

i jS
N

π π
π π

Φ ∩ Φ
=   (2) 

where |·| denotes the number of edges in the intersection set.  

After that, the similarity values between Leader and all 
members are calculated. The calculated values are used to 
sort tmpParent in an ascending order, obtaining sortParent. 
The first m chromosomes of sortParent together form 
NeighborGroup. In addition, we also consider the diversity 
loss caused by the trap of the local optima. A diversity 
enhancement approach is performed on NeighborGroup to 
avoid the search getting into the local optima. Specifically, 
if all the members of NeighborGroup are the same, we 
reinitialized m-1 members, leaving one member unchanged. 
Then, NeighborGroup is shuffled. When the members of 
NeighborGroup are settled, they are added to MatingPool. 
In the meantime, the newly added members are eliminated 
from tmpParent. The above process is repeated until the set 
tmpParent is empty.   

C. Evolutionary Operations  
The basic evolutionary operations of GA include 

crossover, mutation, and selection, which are shown in the 
lines 5 - 8 of Algorithm 1. The three operations are applied 
within the same neighborhood group to avoid global 
convergence. To be specific, crossover and mutation 
operations are adopted with parent pairs of the same 
neighborhood group. That is to say, most gene fragments of 
offspring are inherited from the members of the same 
neighborhood group, and hence the offspring and the 
parents tends to be close to each other. Selection operation 
keeps the superior and diverse solutions while discard the 
others. For each child, the most similar parent of the 
corresponding neighborhood group is identified. The length 
values between the child and this parent are compared. If the 
child is shorter, it will take the place of the chosen parent.  

D. Post-processing Method 
When the algorithm terminates, it will obtain NP 

chromosomes, which correspond to NP solutions. However, 
some of them are unnecessarily to be provided because of 
redundancy or inferiority. Considering this, a post-
processing method is called to identify the representative 

Algorithm 2 Neighborhood(Parent, m) 
Output: 

1: 
The chromosome set MatingPool 
tmpParent  Parent 

2: MatingPool = ∅ 
3: While tmpParent ∅ do 
4: Leader  FindBest(tmpParent) 
5: CalculateShareDist(tmpParent, Leader) 
6: sortParent  Sort(tmpParent.shareDist, 

“ascending”) 
7: NeighborGroup  sortParent [1, …., m] 
8: If all the members of NeighborGroup are the 

same then 
9: DiversityEnhancement(NeighborGroup) 

10: End If 
11: Shuffle(NeighborGroup) 
12: MatingPool = MatingPool + NeighborGroup 
13: tmpParent = tmpParent - NeighborGroup 
14: End While 

Algorithm 3 Preserve(Parent, m) 
Output: The representative solution set . 

1: ShortestLength  SelectBestFitness(NeighborGroup) 
/* return the best fitness value. */ 

2: thrLength  ShortestLength·(1 + ) 
3:  = ∅ 
4: For i = 1 to NP/m do 
5: NeighborGroup (Parent[(i-1)*m + 1, …, i*m ])
6: For every e  NeighborGroup do  
7: If Exsit( , e) then  
8: continue 
9: End If 

10: If e.Length == ShortestLength then  
11:     s /* preserve the chromosome best 

so far */ 
12: Else If e.Length  thrLength then  
13: maxSim  0 
14: For every o    do  
15: If S(e, o) > maxSim then  
16: maxSim  S(e, o) 
17: End If  
18: End For 
19: If maxSim < thrSim then  
20:    e /* preserve diverse 

chromosome*/ 
21: End If 
22: End If 
23: End For 
24: End For 
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ones and then offer them in the final output set. The 
procedure is described in Algorithm 3. To begin with, find 
the solution with the shortest length and record the length as 
ShortestLength. Then, a selection threshold thrLength is 
defined as an -relaxion of the ShortestLength. Afterwards, 
we deal with the NP solutions one by one: we first check 
whether they have already existed in the final output set . If 
yes, the redundant solutions will be discarded. Otherwise, 
we allow a solution to join  under two conditions: 1) its 
length is exactly the same as the length of so far optima 
(shown in the lines 10 - 11 of Algorithm 3), and 2) its 
length is shorter than thrLength and is distinguished from 
the members in , which is controlled by thrSim (described 
in the lines 12 - 22 of Algorithm 3). Here,  is set to 0.01 
and thrSim is 2*ln(N)/N. 

V. EXPERIMENTAL AND ANALYSIS  
In this section, the experimental setups, including the 

benchmark suite, the comparison algorithms, and parameter 
setting are presented in Section V-A. Then, the performance 
measures are described in Section V-B. At last, Section V-C 
reports the experimental results.  

A. Experimental Setup 
To evaluate the performance of discrete MMO 

algorithms, we adopt the proposed benchmark suite of 25 
MSTSPs, which are described in Section III. Existing 
discrete MMO algorithms include niching ant colony system 
(NACS) [20] and multi-chromosomal cramping based 
genetic algorithm (MCC-GA) [19]. NACS incorporates a 
diversity-preserving mechanism into an ant colony system 
to solve MSTSPs. By the diversity-preserving mechanism, 
multiple pheromone matrices are preserved, which guide the 
search of ants towards distinct directions, and thus enables 
the algorithm to obtain diverse solutions in parallel. MCC-
GA encodes l solutions into a chromosome. The population 
search is devoted to finding exact l solutions. The value of l 
should be given in advance. However, it is difficult to 
appropriately set without any prior knowledge of test 
instances. Therefore, as a proof of principle study, we 
investigate the performance of NGA and NACS on the 
proposed test suite.  

The parameters of the NGA are empirically set: 
crossover rate Pc = 0.9, mutation rate Pm = 0.1, and 
neighborhood size m = 6. The parameters of NACS are set 
according to the corresponding publication [20]. The size of 
population is set to 150. All the algorithms terminate when 
the given maximum fitness evaluations (MaxFEs) are 
exhausted. The MaxFEs of 25 MSTSPs has two settings, 
which are listed in Table II. The algorithm should run 50 
times independently to obtain the statistical results.  

B. Performance Measures 
1) Identification of the Optimal Tours 

Each of the above instances has a set of ground-truth 
optimal solutions, denoted as . The aim of an optimization 
algorithm is to locate all optima. For evaluation, we need 
first compare the solution set  returned by the algorithm 
with the ground truths to identify the optimal tours found by 
the algorithm by utilizing Eq. (2). A solution is considered 
to be optimal as long as its similarity with the one of 
ground-truth solutions equals to 1.  

1)  F   Measure  
Typically, an optimization algorithm will provide a final 

solution set  when they meet the termination condition. 
However, the solution set may contain many inferior and 
redundant solutions. To quantify the quality of the solution 
set, we introduce F , which is widely used in pattern 
recognition and information retrieval, as a measure. F  is a 
comprehensive indicator for accessing the precision value P 
and the recall value R of obtained solutions. P is the fraction 
of the obtained solutions that are optimal solutions:  

TPP
TP FP

=
+

  (3) 

where TP is the number of optimal solutions in , and FP is 
the number of non-optimal solutions in . R is the fraction 
of the ground-truth solutions that are successfully located:  

TPR
TP FN

=
+

  (4) 

where FN is the number of optimal solutions that the 
algorithm misses. Actually, the sum of TP and FN is the 
number of total desired solutions in the benchmark. 

Based on the precision and recall, F  [25] is calculated as  
2

2

(1 ) P RF
P Rβ

β
β
+ ⋅ ⋅=

⋅ +
  (5) 

When  is set to 1, it assigns the same importance to both P 
and R. However, for test instance with numerous optima, it 
is more important to locate the most representative ones 
than to locate all of them. So that we set 2 to 0.3 to magnify 
the effect of precision in evaluating the solutions. Besides, 
P, R, and F  are real values between 0 and 1. Ideally, P 
equals to 1 when all the solutions offered by the algorithm 
are optimal; R meets 1 when all the ground-truth solutions 
are located by the algorithm; and subsequently, F  achieves 
1 when the values of P and R both equal to 1.  

To make a further explanation, we take MSTSP9 with 4 
optima as an example and compare with two different 
algorithms A and B. The algorithm A offers 100 solutions, 
whereas the algorithm B provides only 4 representative 
solutions. We suppose that these two algorithms 
successfully locate all the ground-truth solutions. It is 
obvious that the solution quality obtained by B is better than 
that obtained by A, since B provides only necessary 
solutions while A has redundant and inferior solutions. In 
the following, we give a quantitative description. For 
algorithm A, it has TP = 4, FP = 96, and FN = 0. Therefore, 
we can obtain P = 0.04 and R = 1 according to Eqs. (3) and 
(4). For B, it has TP = 4, FP = 0, and FN = 0 according to 
Eqs. (3) and (4). Therefore, we can have P = 1 and R = 1. In 
summary, based on Eq. (5), F  value of A is about 0.051, 
while that of B is 1. From this perspective, the conclusion is 
consistent with the previous intuition.  

2)  Diversity Indicator  

TABLE II. MAXFES APPLIED FOR 25 MSTSP INSTANCES

MSTSP instances MaxFEs 

MSTSP1 - MSTSP12 6.00E+04 

MSTSP13 - MSTSP25 1.20E+06 
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Diversity indicator (DI) is another essential measure for 
evaluating the algorithm performance. When algorithms fail 
to locate any desired solutions, their F  values are all zero. 
In these cases, the DI helps to further differentiate the 
performance of different algorithms. Inspired by the 
evolutionary multi-objective optimization area where the 
algorithm also provides a solution set that needs to be 
evaluated [22], DI measures the diversity of based on the 
convergence of the solutions towards different optimal 
solutions in the ground-truth set . To be specific, DI is 
defined based on the average maximum similarity between 
the obtained solutions and the ground-truth solutions, which 
is calculated as   

1,...,| |1
max ( , )

DI( , )
i jji

S p s
===   (6) 

where pi is the ith permutation of , sj
 is jth permutation of 

, and S(pi, sj) is the similarity between the permutations pi 
and sj using Eq.(1). 

C. Simulation Results 
The F  and DI obtained by NACS and NGA are 

compared in Table III and Table IV. Better results are 
marked in boldface. From Table III, we find that NGA are 
superior to NACS on 18 out of 25 test instances in terms of 
F . However, for the last seven test instances (MSTSP19 - 
MSTSP25), they both get nearly zero F  values, which 
indicates they fail to find any satisfactory solution in the 
MSTSPs with relatively large-scale cities. The observations 
show that the MSTSP instances with relatively large-scale 
cities pose a challenge to discrete MMO algorithms.  

DI is presented in Table IV. The higher DI implies that 
the obtained solutions are more diverse. In Table IV, NGA 
performs better on 17 out of 25 test instances concerning DI. 
For the simple MSTSPs and the geometry MSTSPs, i.e., 
from MSTSP1 to MSTSP12, NGA is always the winner 
except for MSTSP5. For the composite MSTSPs (MSTSP13 
- MSTSP25), NGA performs better than NACS on about 
half test instances, 6 out of 13. The DI values of NGA 
degrade along with the number of cities increasing. The 
observations imply that the neighborhood-based search of 
NGA facilitates the population diversity, but it is inadequate 
for relative large-scale MSTSPs. 

To further investigate the significant effect with respect 
of F  and DI, we also conduct the Wilcoxon rank sum test at 
significant level  = 0.05. The results are listed in Table V. 
From the table, we can conclude that NGA is significantly 
better than NACS concerning F  on 16 out of 25 instances, 
while they tie on 8 test instances. As to another indicator, 
DI, NGA is significantly better than NACS on 17 out of 25 
instances, while NGA loses on another 8 test instances. The 
overall significance test results point out that the NGA 
outperforms in terms of both solution quality and solution 
diversity.  

VI. CONCLUSION 
This paper makes a preliminary study to extend the 

MMO into combinatorial area. To deal with combinatorial 
MMO problems, we incorporate a neighborhood-based 
strategy into GA to obtain diverse solutions. The GA 
facilitates global search to obtain the optimal solution, while 

the neighborhood-based strategy contributes to maintaining 
population diversity to locate potential candidates in 
parallel. Moreover, to evaluate performance of the 
combinatorial MMO algorithm, we propose a benchmark 
suite of 25 MSTSPs designed by three different methods. 
Furthermore, the proposed NGA and the compared NACS 
are utilized to solve 25 MSTSPs. We adopt two indicators to 
compare their performance. F   are adospted to 
comprehensively assess the precision and recall values of 
the returned solutions, while DI measures the diversity and 
convergence of the obtained solutions. It is experimentally 
verified that NGA can achieve a competitive performance 

TABLE III. F  OF NACS AND NGA 

Instance MSTSP1 MSTSP2 MSTSP3 MSTSP4 MSTSP5 

NACS 0.684 0.804 0.497 0.724 0.989 

NGA 0.973 0.959 0.935 0.932 0.846 

Instance MSTSP6 MSTSP7 MSTSP8 MSTSP9 MSTSP10

NACS 0.643 0.125 0.137 0.768 0.813 

NGA 0.877 0.769 0.578 0.974 0.969 

Instance MSTSP11 MSTSP12 MSTSP13 MSTSP14 MSTSP15

NACS 0.459 0.090 0.025 0.087 0.004 

NGA 0.949 0.331 0.096 0.172 0.416 

Instance MSTSP16 MSTSP17 MSTSP18 MSTSP19 MSTSP20

NACS 0.000 0.000 0.000 0.000 0.000 

NGA 0.054 0.044 0.031 0.007 0.000 

Instance MSTSP21 MSTSP22 MSTSP23 MSTSP24 MSTSP25

NACS 0.012 0.000 0.000 0.000 0.000 

NGA 0.000 0.000 0.000 0.000 0.000 

TABLE IV.  DI OF NACS AND NGA 

Instance MSTSP1 MSTSP2 MSTSP3 MSTSP4 MSTSP5 

NACS 0.788 0.894 0.757 0.809 0.983 

NGA 0.980 0.972 0.957 0.947 0.916 

Instance MSTSP6 MSTSP7 MSTSP8 MSTSP9 MSTSP10

NACS 0.843 0.566 0.652 0.820 0.850 

NGA 0.943 0.869 0.838 0.975 0.969 

Instance MSTSP11 MSTSP12 MSTSP13 MSTSP14 MSTSP15

NACS 0.758 0.732 0.752 0.876 0.744 

NGA 0.963 0.809 0.792 0.844 0.847 

Instance MSTSP16 MSTSP17 MSTSP18 MSTSP19 MSTSP20

NACS 0.680 0.765 0.671 0.675 0.745 

NGA 0.783 0.803 0.704 0.699 0.671 

Instance MSTSP21 MSTSP22 MSTSP23 MSTSP24 MSTSP25

NACS 0.773 0.713 0.671 0.724 0.725 

NGA 0.628 0.409 0.344 0.319 0.270 

TABLE V.  THE SIGNIFICANT RESULTS FOR NGA AND NACS 

Wilcoxon rank sum test F  DI

NGA vs. NACS 
(significantly worse than/similar/significantly better than) 1/8/16 8/0/1
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concerning with F  and DI on most MSTSPs. However, they 
both fail to obtain any desired solutions on the MSTSP 
instances with large city size. 

In the future work, we will improve NGA to work out 
the MSTSPs with large city size. In addition, we attempt to 
design more discrete MMO test instances to supplement the 
discrete benchmark.  
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