
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Data-Driven Evolutionary Computation under
Continuously Streaming Environments:

A Drift-Aware Approach
Yuan-Ting Zhong and Yue-Jiao Gong, Senior Member, IEEE

Abstract—Streaming Data-Driven Evolutionary Algorithms
(SDDEAs) have emerged as a crucial paradigm in the area
of data-driven optimization. However, current methods face
critical limitations when handling unpredictable concept drifts
in continuously evolving environments. To address this research
gap, we propose DASE, a drift-aware streaming evolutionary
algorithm that features two key innovations. First, we introduce
a hierarchical confidence drift detector that operates on a moving
window over continuous data streams, identifying concept drifts
by evaluating statistical deviations in model accuracy. Second,
we propose a context-aware warm start mechanism that adap-
tively transfers knowledge from historical environments to the
new environment using environmental similarity-based weighting.
These dual innovations not only enables automatic segmentation
of streaming data into coherence environments but also enhances
optimization performance with the real-time responsiveness. Ex-
perimental evaluations on benchmark problems demonstrate that
DASE significantly outperforms state-of-the-art algorithms across
various drift scenarios, establishing it as a powerful method for
addressing challenges in continuously streaming environment.

Index Terms—Streaming data-driven evolutionary algorithm,
dynamic optimization, streaming data, surrogate model, concept
drift.

I. INTRODUCTION

EVOLUTIONARY Algorithms (EAs) [1] are a class of
algorithms inspired by the principles of evolution. They

solve optimization problems by representing solutions as a
population of individuals, which evolve iteratively based on
the fitness values, following the “survival of the fittest” prin-
ciple. Over the past several decades, EAs have demonstrated
their effectiveness in addressing a wide range of optimization
problems [2]–[5]. Nevertheless, many real-world industrial
applications lack well-defined objective functions and rely
on limited data obtained from costly physical experiments
and numerical simulations for optimization [6]–[10]. This
makes it impractical to directly evaluate fitness values at
each iteration in EAs. To address these issues, Data-Driven
Evolutionary Algorithms (DDEAs) have been proposed [11].
DDEAs leverage data and employ machine learning techniques

This work was supported in part by Guangdong Natural Science Funds
for Distinguished Young Scholars (Grant No. 2022B1515020049), in part
by National Natural Science Foundation of China (Grant No. 62276100), in
part by Guangzhou Science and Technology Elite Talent Leading Program
for Basic and Applied Basic Research (Grant No. SL2024A04J01361), and
in part by the Fundamental Research Funds for the Central Universities.
(Corresponding author: Yue-Jiao Gong)

Y.-T. Zhong and Y.-J. Gong are with the School of Computer Science
and Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: {ytalienzhong, gongyuejiao}@gmail.com).

to construct surrogate(s) that approximate the real fitness
values, thereby assisting the optimization process in EAs and
reducing the computation cost. Researches have demonstrated
that DDEAs can achieve high-quality solutions with only
relying on data [12]–[16].

However, in many real-world applications, data is generated
as continuous streams, which poses unique challenges for
traditional approaches. For instance, in modern smart cities,
traffic monitoring systems generate continuous data streams,
such as vehicle counts and traffic flow patterns from sen-
sors [17], [18]. Storing this real-time data in memory is often
impractical due to its volume [19]. Moreover, traffic patterns
can shift unpredictably due to factors like accidents or weather
[20], causing concept drift, where data distribution evolves
over time [21]. Offline processing such huge amount of data
demands growing storage capacity and may cause delayed
analyses. Consequently, DDEAs designed for static environ-
ments are not equipped to handle the additional challenges
posed by data streams with concept drift. First, keep tracking
promising solutions is crucial in dynamic environments, as
solving from scratch for each new environment is inefficient
and fails to leverage correlations between data concepts [22].
Second, timely detection and segmentation of concept drift are
essential to maintain surrogate accuracy and prevent mislead-
ing EAs. Moreover, effective data management is needed to
balance data quantity, as too little data causes overfitting, while
too much hinders surrogate’s quick adaptation to environment
changes [23].

So far, only a few attempts [24]–[27] have been proposed
considering difficulties inherent in challenges mentioned above
in dynamic environments with concept drifts, named Stream-
ing DDEAs (SDDEAs) [23]. Typically, they focus on the
correlation between different environments in data streams and
manage the continuous growth of data through designing data
management strategies. While existing methods have shown
promising results in dynamic environments, the following
issues remain unresolved:

1) Nearly all existing SDDEAs assume that concept drift
between environments is known a priori. As a result,
they treat each distinct batch of data points in the stream
as a separate environment, assuming that concept drift
happens whenever a new batch is introduced. However,
in reality, the onset of concept drift is often unpre-
dictable, and the changes in data distributions may be
subtle or gradual, making it difficult to detect and handle
using batch-based assumptions.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

2) Many methods presume that all data from the current
environment is available at once. This does not reflect
the continuously streaming nature of complex scenarios,
which requires real-time and incremental adaptation.

3) Some SDDEAs rely on active sampling for solution-
fitness pairs during the optimization process, which is
generally not feasible in many complex scenarios that
only have passive data available [22], [28]–[30].

To fill this huge research gap, we propose a drift-aware
streaming evolutionary algorithm, called DASE. The main
contributions of this research are as follows.

• We propose a drift-aware framework designed to handle
unknown drifts in continuous streaming environments.
The framework continuously monitors the data stream
and identifies when concept drift occurs. When a drift
is detected, relevant information from the previous envi-
ronment is archived, and an adaptive knowledge transfer
mechanism is employed to warm-start the optimization
process. This allows for faster and more efficient adap-
tation to the new environment. If no drift is detected,
the framework continues optimization within the current
environment.

• We propose a hierarchical confidence drift detector
(HCDD), which operates on a moving window to han-
dle continuously streaming data. It monitors model’s
error-rate deviations for incoming data using multiple
confidence levels of warning intervals. This hierarchical
approach enables more precise and adaptive detection of
various types of concept drifts.

• For new environments, we design an adaptive knowledge
transfer mechanism to enable warm-start and mitigate the
inefficiencies of optimization from scratch. It adaptively
reuses relevant information from past environments at
both the surrogate and population levels, ensuring the
algorithm’s effectiveness by focusing on the most perti-
nent knowledge while avoiding overload from irrelevant
information.

• Besides, as mentioned, some SDDEAs rely on active sam-
pling to select specific solution-fitness pairs during opti-
mization, while our algorithm uses passively incoming
data. In other words, it processes continuously streaming
data without the ability to actively select which solution
positions to sample for fitness, making it more suitable
for real-world environments.

We compare our proposed algorithm with state-of-the-art
(SOTA) SDDEAs and DDEAs on benchmarks with different
types of drift, and the experimental results verify the effec-
tiveness and superiority of our DASE.

The remainder of this paper is organized as follows. Sec-
tion II provides a summary of the background and related
work. Section III presents the details of our proposed DASE.
The experimental comparisons and analyses are discussed in
Section IV. Finally, Section V concludes the paper and outlines
directions for future work.

II. BACKGROUND AND RELATED WORK

A. Problem Definition

The Streaming Data-Driven Optimization (SDDO) problem
involves optimizing a time-varying, agnostic objective func-
tion based on sequentially arriving data, where the problem
landscape and global optima evolve over time due to concept
drift. At each time step t ∈ {1, · · · , T}, a new data point
(x, yt) is observed, with no access to the explicit form of the
objective function Ft. The goal is to continuously track the
dynamically changing optimum x∗

t = argmin
x

Ft(x), relying
solely on passively observed data. In this study, we utilize
SDDObench [23] to generate such evolving data streams. Due
to space limitation in the manuscript, the detailed formulation
of the SDDO problem definition is presented in the Section
I-A of the supplementary material.

B. From DDEAs to SDDEAs

In DDEAs [31]–[34], the problem information is derived
from available data, which is used to construct surrogate
models that approximate real fitness values to assist the
optimization process. During the optimization process, some
DDEAs actively query a fixed number of decision variables
(xi) to obtain their corresponding objective values (yi) [35],
[36]. These newly sampled data points are incorporated into
the dateset, enriching the problem landscape representation
and enhancing the surrogate model accuracy [37]–[39]. In
contrast, other DDEAs acquire data passively, relying solely
on off-the-shelf data from related applications/tasks without
collecting new data during the optimization process [13], [15].

Building upon the foundation of DDEAs, SDDEAs extend
these approaches to streaming environments, where data ar-
rives in an ongoing fashion [23]. Unlike static contexts, opti-
mization in continuously streaming environments presents ad-
ditional challenges. Firstly, as data streams grow indefinitely,
memory constraints prevent storing all the data for future use.
Furthermore, streaming data often exhibits spatial and tem-
poral correlations, such as periodicity and time-dependence,
making it inefficient to optimize each new environment from
scratch. Moreover, SDDEAs require concept drift detection
mechanisms to identify and segment distinct environments
within the infinite data streams. This mechanisms ensure the
optimization process remains adaptive, efficient, and respon-
sive to the evolving problem landscape.

Despite significant progress in DDEAs, research on SD-
DEAs remains relatively limited. Leveraging knowledge from
past environments in continuously streaming data can substan-
tially enhance optimization in the current environment. One
class of methods involves enriching the current dataset with
the best-found solutions from past environments. For instance,
SAEF-1GP [24] augments the current dateset with best-found
solution from the mos recent environment, relying heavily
on real fitness evaluations. Similarly, SAEA/MPCP [40] em-
ploys clustering and differencing techniques to predict new
data based on the best-found solutions from the two most
recent environments. SAEA-TL [41] selects historical based
on models with lower root mean square error (RMSE) in the
current environment. Additionally, DETO [25] clusters past

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

model parameters and integrates solutions from environments
nearest to the cluster centroid.

Another class of SDDEA methods focuses on leveraging
past surrogate models to improve current performance. DSE-
MFS [26] maintains a model pool, updating existing models
and adding a new one for each environment, then combines
them via weighted integration. MLO [27] adopts a meta-
learning framework, using parameters from past models to
initialize models configuration for optimization in the new
environment.

These approaches highlight the potential of utilizing past
knowledge, whether through data or model transfer, to improve
optimization in dynamic environments under data streams.
However, several limitations remain in existing methods.
Firstly, existing methods do not explicitly address unknown
concept drifts in data streams, as they assume concept drift
is known a priori and occurs whenever a new batch of data
is introduced. Moreover, they typically assume simultane-
ous access to all data in the new environment, a condition
incompatible with continuously streaming data that arrives
incrementally. In addition, some methods rely on only the most
recent high-quality solutions for memory-based population
initialization, which is fragile in the presence of recurrent
drifts. Furthermore, some methods depend on active sampling
of specific solutions during the optimization process, which
can be impractical. These challenges underscore the urgent
need for further research and innovation in SDDEAs to de-
velop algorithms capable of handling streaming data, unknown
concept drifts, and real-time adaptability effectively.

C. Concept Drift in Data Streams and Handling Approaches
In this paper, we are going to propose a novel drift-aware

SDDEA. Before proceeding, it is important to review the
basics of concept drift and traditional methods for handling it
in streaming data mining [42]. Concept drift refers to changes
in the conditional distribution of objective values given static
decision variables [43], and is typically classified into three
types: i) Sudden drift, characterized by abrupt changes. ii) In-
cremental drift, involving progressive transitions. iii) Recurrent
drift, where past concepts reappear after a prolonged period.
In many real-world applications, data streams are subject
to one or more types of concept drift, with unpredictable
timing [44]. For example, weekday rush-hour traffic patterns
can be disrupted by accidents, weather, or other unforeseen
events, impacting traffic speeds and congestion levels [45].
While financial markets fluctuate due to market trends, policy
shifts, and other external factors [46].

Concept drift can degrade model performance, making
timely and accurate detection crucial. A common strategy
monitors prediction error rates, identifying drift when sta-
tistically significant changes occur [47]. The Drift Detection
Method (DDM) [48], a widely used technique, employs two
thresholds: surpassing the warning threshold triggers current
model retraining while exceeding the drift threshold triggers
model replacement. Over the years, various extensions have
since been proposed. EDDM [49] enhances detection sensi-
tivity by analyzing the distance between consecutive misclas-
sifications. HDDM [50] applies Hoeffding’s inequality to set

error bounds, while FW-DDM [51] performs incremental drift
detection using fuzzy time windows.

These methods work well for classification tasks where pre-
dictions are discrete [52]. However, in optimization problems,
the objective values typically span a complex optimization
space with infinite possibilities, often resulting in a regression-
type problem that violates the boundedness assumptions of
these methods [53]. The wide variability in objective values
leading to large differences in prediction errors, making the
model’s error highly sensitive to individual points. As a result,
traditional “one-hit-then-detect” methods, which trigger drift
detection after a single large error, are more prone to false
positives due to this sensitivity. This highlights the need for
drift detection mechanisms specifically tailored to the context
of SDDEAs.

III. PROPOSED ALGORITHM

A. Framework

The framework of DASE is depicted in Fig. 1. Initially,
the first environment is built using the initial dataset. As data
streams arrive, the data at each time point is evaluated by the
hierarchical confidence drift detector (HCDD) (Section III-B)
to determine whether it belongs to current environment. When
the detector signals a concept drift, a new environment is
constructed. Dynamic environments often exhibit correlations
between successive environments, making optimization from
scratch inefficient without leveraging previous knowledge [4].

To address this, we maintain an archive (Section III-C),
that stores historical environmental information. This archived
knowledge facilitates the warm-up construction of new en-
vironments (Section III-E) through the adaptive knowledge
transfer mechanism (Section III-D).

The pseudo code of DASE is provided in Algo-
rithm 1, with its building blocks detailed in the sub-
sequent subsections. The source code is available at
https://github.com/YTALIEN/DASE.

B. Hierarchical Confidence Drift Detector

In the continuously streaming environment, data arrives se-
quentially, the distributional relationships between data points
are typically unknown, and concept drift cannot be identified
a priori. When the data distribution changes, the accuracy of
models constructed in the previous environment deteriorates,
leading to a decline in algorithmic performance.

Considering a sequence of instances represented as pairs
Xi = (xi, yi). The error rate predicted by models can be
calculated as

ERi =


∣∣∣∣yi − ŷi

yi

∣∣∣∣ , yi ̸= 0

|yi − ŷi|, otherwise
(1)

where ŷi denotes the object value predicted by models.
For an objective space, the error rate is treated as a

Gaussian-like random variable (an empirical validation is
provided in the Section III of the supplementary material).
In a static environment, the probability distribution of the data

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

https://github.com/YTALIEN/DASE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Construct new Envk

Data stream

Initial Env1 Current Envk

Concept drift?

Archive (Sec III-C)

The best
solutiont

Variation

Evaluation

Selection

Stop?

Yes

No

Yes

Retrieve Envk

No

Moving window
Boundary

data

the best random

+
Population initial

Bi-level warm start
(Sec III-E)

Adaptive knowledge
transfer (Sec III-D)

HCDD (Sec III-B)

Fig. 1. The framework of the DASE.

Algorithm 1 DASE
Input:

D = {· · · , Xt, · · · }: Data streams; ninit: The sample size of the
initial environment; np: The population size; nopt: The optimal
population size; arcmax: The maximum number of environments
stored in the archive; mhLi: The maximum hit limit for confi-
dence level Li, i = 1, 2, 3; u: The model update period.

Output: The optimal solution for time t
1: Arc ← ∅, k ← 1, Dinit ← D(1, ninit)
2: P ← Latin hypercube sampling ▷ Initialization
3: mk, Wk, P opt

k ← InitialEnv(Dinit) ▷ Build env 1
4: Arc ← Arc ∪ {{Dinit,mk,Wk, P

opt
k }} ▷ Store env 1

5: while not the end of D do
6: Xt ← D(t)
7: Dk,mk,Wk, P

opt
k ← Arc(k) ▷ Retrieve current env

8: Flagdrift, Dbd ← HCDD(mhLi, mk, D, Dk) ▷ Drift detect
9: if Flagdrift = True then

10: k ← k + 1
11: mk, Wk, P opt

k ← NewEnv(Arc, Dbd) ▷ Build new env
12: n ← |Dk|+ 1
13: else if n mod u = 0 then
14: mk ← UpdateModel(Dk) ▷ Update model
15: end if
16: Pk ← ReusePopulation(Arc) ▷ Pop level’s warm-start
17: Mk ← Eq. 5 ▷ Model level’s warm-start
18: P opt

k ← EvolvePopulation(Pk, Mk) ▷ Optimization iteration
19: Dk ← Dk ∪ {Xt} ▷ Update dataset
20: Arc ← Arc ∪ {{Dbd,Dk,mk,Wk, P

opt
k }}

21: if len(Arc) > arcmax then
22: Arc ← Arc / {Arc(1)} ▷ Update archive
23: k ← k − 1
24: end if
25: return P opt

k (1)
26: end while

remains stable, and the model’s prediction errors will fluctuate
around a fixed mean. We characterize the current environment
(Dk = {X1, · · · , Xq}) by the mean and standard deviation of

the model error rates as

µ =
1

q

q∑
i=1

ERi , σ =

√√√√1

q

q∑
i=1

(ERi − µ)2 (2)

where q is the number of data points collected for the current
environment.

To detect concept drift, we assess whether there has been
a significant change in the error rate. Accordingly, a warning
interval is defined as [µ + λ × σ,∞), where λ is a constant
determined by the desired confidence level. By monitoring
whether the error rate of incoming data frequently falls inside
this interval, we can detect significant changes and identify
when concept drift occurs.

Multiple concept drifts of varying magnitudes can oc-
cur in complex data streams, ranging from incremental to
sudden, as mentioned in Section II-C. Smaller degrees of
change may go undetected if the warning interval is too
narrow, while overly broad warning intervals can lead to false
positives, misidentifying stable distributions as drifting. To
address these challenges and account for varying degrees of
drift, we adopt a hierarchical confidence strategy with tri-
level confidence strategy. The first confidence level L1 is set
at 67% + (1 − 67%)/2 = 83.5%, with a warning interval
of [µ + σ,∞). The second confidence level L2 is set at
95% + (1 − 95%)/2 = 97.5%, corresponding to a warning
interval of [µ+ 2σ,∞). Lastly, the third confidence level L3

is set at 99%+(1−99%)/2 = 99.5%, with a warning interval
of [µ+ 3σ,∞). This hierarchical confidence strategy enables
effective detection of drifts with smaller magnitudes while
maintaining sensitivity to larger changes, thus minimizing false
positives and improving overall detection accuracy.

In addition, the complex distribution of the fitness landscape
in the objective space poses challenges for models’ accuracy

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

across all regions. In well-fitted regions, the approximation
error rate is relatively low. However, in more challenging
areas, such as near-peak regions where fitness values exhibit
high variability, models struggle to accurately approximate
the true landscape. Consequently, an elevated error rate for
a single instance at one time dose not necessarily indicate
concept drift, as it may stem from model approximation
errors. This issue is particularly problematic in “one-hit-then-
detect” methods, which may falsely identify drift based on
isolated errors, without accounting for the inherent variability
of complex optimization landscape. To enhance drift detector
reliability, the proposed HCDD employs a moving window
(MW) and a multiple-hit confirmation strategy. The MW
continuously updates with new data points while discarding
the oldest, ensuring the detector reflects the most recent data
distribution rather than relying on single instance evaluations.
Additionally, each confidence level is assigned a hit counter
(hLi for i = 1, 2, 3), and drift is confirmed when the
corresponding hit count reaches its predefined maximum. This
method effectively mitigates false positives caused by model
approximation errors, enhancing the robustness of the drift
detection mechanism.

The steps of HCDD are summarized in Algorithm 2. Ini-
tially, the distribution of the current environment is calculated
using all data in the dataset Dk. More specifically, as data
continuously arrives, Dk expands until drift is detected. Upon
detecting a new environment, Dk is reset to the boundary
data Dbd, which includes data points falling inside the warn-
ing intervals identified by the drift detector. Otherwise, Dk

continues expanding. Then tri-level confidence thresholds are
established, with their corresponding hit counts initialized to
zero. As streaming data continuously arrives, the MW updates
by adding the newest data point and removing the oldest.
The relative mean (µ̂) and standard deviation (σ̂) of MW are
computed to represent the most recent data distribution. The
updated distribution is sequentially compared against the tri-
level confidence thresholds to determine if it falls inside any of
the corresponding warning intervals. If it dose, the hit count
associated with the respective confidence level is increased.
When the hit count for any confidence level reaches its
predefined maximum hit limit (mhLi for i = 1, 2, 3), the drift
is considered to have occurred. For instance, if µ̂+σ̂ ≥ µ+3σ,
then hL3 ← hL3 + 1. Drift is detected when hL3 reaches
mhL3. Incorporating the moving window and multiple hit
strategies reduces false positives caused by inaccuracies of
the model approximations in complex optimization problem
spaces. Furthermore, the hierarchical confidence strategy en-
hances sensitivity and enables more accurate detection of
varying degrees of drift. Finally, data points falling inside the
warning intervals are added to a boundary data zone and stored
in the archive for future use as training data to build new
models when a new environment emerges.

C. Archiving Strategy

The necessity of an archiving strategy in optimization
under data streams arises from three primary reasons. First,
continuous data arrival and limited memory capacity make it

Algorithm 2 HCDD
Input:

D = {· · · , Xt, · · · }: Data streams; Dk: The data for the current
environment; mk: The model for current environment; mhLi:
The maximum hit limit for confidence level Li, i = 1, 2, 3;

Output: Flagdrift, Dbd

1: Flagdrift ← False
2: µ, σ ← GetDistribution(mk,Dk) ▷ Via Eq. 2
3: µ+ i× σ ← GetThresholds(µ, σ), i = 1, 2, 3
4: Initialize MW , hLi ← 0, Dbd ← ∅ ▷ Initialization
5: while not the end of D do
6: MW .moving(Xt) ▷ Add newest data point, remove oldest
7: µ̂, σ̂ = GetDistribution(mk,MW) ▷ Via Eq. 2
8: if µ̂+ σ̂ > µ+ 3σ then
9: hL3 ← hL3 + 1 ▷ Data falls inside L3 interval

10: Dbd ← Dbd ∪ {Xt}
11: else if µ̂+ σ̂ > µ+ 2σ then
12: hL2 ← hL2 + 1 ▷ Data falls inside L2 interval
13: Dbd ← Dbd ∪ {Xt}
14: else if µ̂+ σ̂ > µ+ σ then
15: hL1 ← hL1 + 1 ▷ Data falls inside L1 interval
16: Dbd ← Dbd ∪ {Xt}
17: end if
18: if hL1 = mhL1 or hL2 = mhL2 or hL3 = mhL3 then
19: Flagdrift ← True ▷ Concept drift detected
20: break
21: end if
22: end while
23: return Flagdrift, Dbd

impractical to store all incoming data. A representative subset,
reflecting the current distribution, is retained to construct high-
fidelity models for the current environment. Second, storing
information from previous environments prevents restarting
optimization from scratch during transitions to new environ-
ments, enabling faster adaptation to new environments. Third,
outdated information becomes irrelevant to the current envi-
ronment due to the time-sensitive nature in data streams. Allo-
cating limited storage to more relevant and timely information
minimizes computational overhead, enabling the algorithm to
adapt rapidly to changing environments and improving real-
time responsiveness.

Given these considerations, in our DASE, the archive for the
current environment k retains the following key information:

1) Boundary Data (Dbd): This dataset includes data points
that fall inside the warning intervals identified by HCDD
and are used, along with incoming data, to build new
environments.

2) Dataset (Dk): This dataset comprises data collected
within the current environment and is incrementally
updated as new data streams arrive. It is reset upon
detecting environmental changes and serves as the foun-
dation for constructing and updating the model for the
current environment.

3) Models (mk): The models are constructed using the
dataset Dk for the current environment, which capture
the distribution of the current environment and the
approximate fitness values for optimization. They are
periodically updated with newly available data after
every u data points to balance real-time responsiveness
and stable performance.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

4) Weights (Wk): The set of weights quantify the similarity
of past environments to the current one, guiding the
warm-start strategy of reusing of historical knowledge
to enhance optimization efficiency.

5) The best-found Population (P opt
k): The best-found pop-

ulation is derived through optimization at each time
point in the current environment, with a size of nopt.
The best-found population is incorporated into the initial
population for the subsequent time point. This approach
accelerates optimization and maintains diversity to avoid
premature convergence.

At each time point, incoming data associated with the
current environment archive information are used to detect
drift and identify the emergence of a new environment. If a
new environment is detected, historical information is retrieved
to facilitate the warm-start phase, accelerating optimization
in the new environment. Conversely, if no drift is detected,
the current environment’s information is retrieved to continue
optimization without models reconstruction. The archive is
updated accordingly. To manage storage constraints, when
the maximum capacity of the archive is exceeded, the oldest
environment’s information is discarded to make space for the
new environment.

D. Adaptive Knowledge Transfer

In continuously streaming environments, limited data avail-
able at each time point makes it impractical to ignore previous
knowledge. Notably, recurring concepts may appear over time,
allowing valuable information from past environments to be
reused. Building on the concerns identified, we propose a
warm-start strategy for building new environments via an
adaptive knowledge transfer mechanism. This section intro-
duces the adaptive knowledge transfer mechanism, with the
warm-start strategy detailed in the following Section III-E.

The adaptive knowledge transfer mechanism assigns
weights to past environments, prioritizing information from
environments that exhibit higher relevance to the current
environment. In essence, the similarity between environments
j and k is calculated by differences in predicted objective
values and approximation errors, as defined in Eq. 3.

MDj,k =
∑

i∈P rnd

1

|P rnd|
(ŷji − ŷki)

2

AEj,k =
∑
i∈Dk

1

|Dk|
(ŷji − yi)

2

Simj,k =
1

MDj,k +AEj,k + δ

(3)

where P rnd is a randomly sampled population from solution
space, Dk contains archived data for environment k with
known ground-truth fitness values, and ŷji is the predicted
objective value of models in environment j for solution i. A
small constant δ = 10−5 is added to avoid division by zero.

The similarity calculation involves two main components.
The first is the mapping distance (MDj,k), which compares
predicted objective values differences from environments j and
k on a random population. The second is the approximation

error (AEj,k), which measures how well the model in envi-
ronment j approximates the true fitness values in environment
k. By combining these two components, a comprehensive
quantitative measure of similarity between two environments
is obtained.

Once the similarity is determined, the weight of each past
environment is calculated using Eq. 4.

wk = max(0.5, 1− k

arcmax
)

wj = (1− wk) ·
Simj,k∑k−1
i=1 Simi,k

, j = 1, · · · , k − 1
(4)

where Simj,k denotes the similarity between the environment
k and j, and arcmax is the maximum capacity of the archive.
The weight of current environment wk smoothly decreases
from 1 to 0.5 as environmental index k approaches the archive
capacity, ensuring the newest environment retains at least
50% influence. The residual weight (1− wk) is distributed
proportionally to environment similarities Simj,k, assigning
higher weights to more similar environments.

The adaptive knowledge transfer mechanism reduces the
influence of less relevant past environments, prioritizing more
similar historical information. This ensures the optimization
process efficiently leveraging relevant knowledge, improving
performance in dynamic environments.

E. Bi-Level Warm Start

Based on adaptive knowledge weighting, the warm-start
strategy utilizes information from past environments at two
levels, which contains the models and the best-found popula-
tions.

Specifically, the two levels for reusing historical knowledge
in the warm-start strategy are as follows:

1) Weighted Ensemble of Models: Models from past
environments with greater similarity to the current one offer
valuable insights into the problem landscape. This enables
smoother adaptation to the current problem landscape by
utilizing knowledge from different regions of the solution
space, captured by models from distinct environments. This
enhances the fitting ability of current models, which may
otherwise be poorly adapted due to limited data. In cases of
recurrent drift, similar environments are likely to reappear. By
keeping past models unaltered (i.e., not fine-tuning them with
new data of current environment), we prevent catastrophic for-
getting of environment-specific patterns. These frozen models
serve as “knowledge anchors”, preserved for reuse when the
corresponding environments reappear.

Based on the adaptive knowledge weights calculated in Sec-
tion III-D, the ensemble of models for the current environment
k is constructed as:

Mk =

k∑
j=1

wj ·mj (5)

2) Weighted Reuse of the Best-found Populations: Dy-
namic environments often display correlations between suc-
cessive conditions [4], making it advantageous to reuse the

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

best-found populations from past environments to initialize
the current optimization process. The best-found popula-
tions from past environments encapsulate valuable information
about promising regions in the solution space, which can be
leveraged to accelerate the exploration for the the best-found
solutions in the current environment.

Hence, we use the best-found populations from past en-
vironments as part of the initial population for the new
environment. At first, the top nj individuals from each past the
best-found population are selected. For each past environment,
nj = min(nopt, ⌊np ·wj⌋), where np represents the population
size, wj denotes the weight of environment j, and the min
operator ensures that the number of reused individuals dose
not exceed the size of the best-found population (nopt). These
selected individuals are then combined, with the top nopt

individuals chosen to form the initial population for the new
environment. Additionally, random individuals are included
in the initial population to increase diversity and improve
the algorithm’s exploratory capabilities. The second part of
the initial population consists of nk = np − nopt random
individuals.

F. Complexity Analysis
Considering a data stream with N total points processed

over N time steps, the overall time complexity of DASE can
be analyzed as follows. The time complexity of the HCDD
is O(N). For the adaptive knowledge transfer mechanism,
the time complexity is dominated by similarity calculation
by O

(∑Nenv

k=1 Nk

)
, where Nk is the dataset size in the k-th

environment, and Nenv indicates the number of environments
determined by HCDD. The relationship among N , Nk, and
Nenv is given by: N ≤

∑Nenv

k=1 Nk ≤ |MW | · N . When
the HCDD divides the data streams completely without any
overlapping elements, it holds that

∑Nenv

k=1 Nk = N . Con-
versely, in the other extreme scenario where the HCDD starts
a new environment to each incoming data point, it results in∑Nenv

k=1 Nk = |MW | · N , since the data within the moving
window MW becomes the dataset for the new environment.
Consequently, the time complexity of the adaptive knowledge
transfer step remains O(N), as |MW | is a constant and can be
disregarded. For the bi-level warm start process, the surrogate
model construction during the warm ensemble stage is domi-
nated by the construction of RBFN of the new environment,
exhibits a time complexity of O

(∑Nenv

k=1 (k
2
c · Nk)

)
for all

environments, where kc represents the number of RBF centers.
Typically, kc is on the order of

√
N , making the complexity

of all surrogate construction O(N2). The population reuse
complexity is linear to the n, where n is the population size.
Finally, population evolution maintains a time complexity of
O(nN), with the number of generations associated with the
data stream length N . In summary, the overall time complexity
of DASE is O(N2 + nN).

IV. EXPERIMENTS

A. Experiment Setup
In the experiments, we utilize SDDObench [23], a bench-

mark specifically designed for SDDEAs, to evaluate the per-

formance of our proposed algorithm. This benchmark con-
sists of two sets of objective functions combined with five
distinct types of concept drifts. In total, it comprises eight
diverse problem instances, denotes F1 to F8. The evaluation
of SDDObench demonstrates that existing SDDEAs still face
significantly challenges in effectively addressing these bench-
mark instances [23]. A more comprehensive description of the
benchmark instances can be found in the Section I-A of the
supplementary material.

The experimental section of our study consists of three
main experiments. First, we compare our proposed DASE with
state-of-the-art (SOTA) DDEAs, including DDEA-SE [54],
BDDEA-LDG [55] and TT-DDEA [56] (Section IV-D). Sec-
ond, we evaluate the performance of our DASE against some
SOTA SDDEAs, including DSE-MFS [26], DETO [25], and
SAEF-1GP [24] (Section IV-E). Moreover, we conduct some
ablation studies to access the contributions of individual
components in DASE (Section IV-F). Finally, we perform
parameter analysis of DASE, with the results presented in
Section IV-G and in Section IV-C of the supplementary
material.

To ensure the validity and fairness of our experiments, we
adopt the following experimental settings.

• Data Streams: The total number of data points in the data
streams is given by Ne · es, where Ne is the number of
environments in each independent run, set to 60, and es is
the number of data points in each environment, set to 200.
Samples in the data streams are generated using Latin
hypercube sampling (LHS) [57]. Most existing methods
assume access to batch data and treat each batch as a
distinct environment. In our experiments, the data arrives
as a continuous stream. To ensure a fair comparison,
we introduce an update interval u, restricting existing
methods to update their solutions only after accumulating
u new data points. Naively setting es = u would
unfair benefit these methods by revealing the precise
environment shift timing (by aligning u with the true
environment boundary), while our method needs to detect
it without prior knowledge. On the other hand, setting
es independently of u aligns with practical situations
with unknown drifts, but it could cause the previous
methods to become very unstable due to mismatched
batch expectations. Thus, we set es as a multiple of
u, which ensures that the previous methods can still
perform stably while avoiding to leak knowledge of drift
timing (providing a relatively fair test surrounding for
DASE). Fig. 1 in the supplementary material provides
a comparative illustration of the data usage protocols
between DASE and the compared methods.

• Evolutionary Optimizers: The number of optimal itera-
tions, i, at each time point is set to 30, and the population
size is uniformly set to 100.

• Other Parameters: All other parameters remain consistent
with those outlined in the original literature to ensure
optimal performance and a fair comparison.

Each problem instance is carried out in 10 independent runs,
and the results are reported as the average and standard

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

deviation.
Additionally, we employ the Kruskal-Wallis test [58] fol-

lowed by post hoc Dunnett’s test [59], with a Bonferroni
correction strategy [60]. The Kruskal-Wallis test is used to
assess whether there are significant differences among the
compared algorithms. If the test indicates a significant effect,
post hoc Dunnett’s test is then used to perform multiple
comparisons between every two algorithms. The Bonferroni
correction is applied to adjust the p-values, reducing the risk
of type I errors due to multiple testing. The significance
level is set to 0.05. To indicate performance comparisons,
we use “+” to denote that DASE outperforms a competing
methods, “≈” to indicate similar performance, and “−” to
denote underperformance. For each problem instance, the best-
performing algorithm is highlighted in bold. The average rank
of each algorithm across all problem instances is also provided
in the table, offering a comprehensive comparison of their
performance.

The experiments are conducted on an environment with
following specifications: Intel(R) Xeon(R) E5-2696 v3 @
2.30GHz with 128G of RAM. The implementation of our code
is done in Python. It is worth noting that the algorithms used
for comparison were implemented by their respective original
authors.

B. Algorithmic Settings

An overview of the parameter settings for DASE is pre-
sented in the Table I and further elaborated below. For the
surrogate models in the current environment, we use radial ba-
sis function network (RBFN) due to its excellent performance
in numeric approximation and low computational cost. The
number of RBF centers is set to

√
N , where N represents

the size of the data used to construct the models. Gaussian
function is chosen as the basis function, and the centers are
determined using K-means clustering. The weights of the
linear layer in the RBFN are calculated through pseudo-inverse
method [15].

In the module of HCDD, the moving window size |MW |
is set to 50, which is at least equal to the model update
interval, ensuring statistical reliability. The maximum hit limits
for three levels, mhLi, i = 1, 2, 3, are defined based on the
level factor β, which is set to 10. Specifically, mhL1 is set to
3β, mhL2 to 2β, and mhL3 to β.

The maximum archive size in DASE, as arcmax, is set to
30, striking a balance between adequately capturing recur-
ring drifts and minimizing excessive storage requirements. In
the bi-level warm start strategy, the proportion of the best-
found individuals ropt reused in the initial population is set
to 0.2. This implies that the initial population consists of
nopt = ⌊np · ropt⌋ the best-found individuals reused from
past environments, with the remaining np − nopt individuals
being randomly generated.

For the evolutionary optimization process, we adopt the
DE/current-to-best/1/bin algorithm, known for its strong global
optimization capabilities. The scalar parameter F is set to
0.5 and the crossover rate Cr is set to 0.9, enhancing the
population’s diversity and exploration ability.

TABLE I
PARAMETER SETTINGS OF DASE

Module Parameter Value

HCDD Moving window size 50
Level factor β for maximum hit limits 10

Surrogates Number of RBF centers kc

√
N*

Archive arcmax 30
Warm start r

opt 0.2

Optimization process DE/current-to-best/1/bin F 0.5
DE/current-to-best/1/bin Cr 0.9

*N is the size of the data used to construct the surrogates

C. Performance Metrics

Since the landscape and optimum solution change across
different environments, it is essential to evaluate how al-
gorithms track the the best solution under such dynamic
environments. In this paper, we assess the performance of
SDDEAs using two widely-used and effective performance
measures, as described in [23].

• Online Error (E(t,i)
online): This metric evaluates the error

between the best-found solution and the global optimal
solution for specific iteration. It is formally defined as:

E
(t,i)
online = f(x∗(t,i))− f(x⋆(t)) (6)

where x∗(t,i) is the best solution found after i-th iteration
in the t-th time point, and x⋆(t) is the global optimal
solution in the t-th time point.

• Offline Error (Eoffline): It computes the average error
between the best-found solution and the global optimal
solution across iterations. It is defined as:

Eoffline =
1

TI

T∑
t=1

I∑
i=1

[
f(x∗((t−1)I+i))− f(x⋆(t))

]
(7)

where T is the total number of time points, given by
Ne · es, I is the iterative number in the current environ-
ment, x∗((t−1)I+i) is the best solution found at the i-th
iterative evaluation in the t-th time point, x⋆(t) has the
same definition as in Eq. 6.

These metrics provide a comprehensive evaluation of the algo-
rithms ability of tracking for optima in dynamic environments.
The Eoffline metric is used to compare the overall performance
of the algorithms (as shown in Table II and Table III), while
Eonline illustrates the convergence trajectories of the compared
algorithms (as shown in Fig. 2).

D. Comparison with DDEAs

In this subsection, we compare our proposed DASE with
several SOTA DDEAs (DDEA-SE, BDDEA-LDG and TT-
DDEA). Although these algorithms are primarily designed
for solving problems in static environments, they incorporate
advanced techniques such as surrogate ensembles and semi-
supervised learning, which enhance their search capabilities in
optimization tasks. Therefore, we conduct this experimental
comparison to further illustrate the effectiveness of our DASE
in comparison to these DDEAs. A brief description of each al-
gorithms is provided in the Section IV-A of the supplementary
material. These algorithms introduce various enhancements to

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE II
THE MEAN AND STANDARD DEVIATION OF Eoffline

Instance Drift DDEAs SDDEAs DASETT-DDEA DDEA-SE BDDEA-LDG DETO DSE-MFS SAEF-1GP

F1

D1 6.64e+01±3.03e-02 (+) 6.55e+01±1.26e-01 (+) 6.56e+01±1.02e-01 (+) 6.75e+01±8.04e-01 (+) 6.72e+01±3.21e-02 (+) 6.55e+01±3.43e-02 (+) 6.05e+01±2.83e-02
D2 6.54e+01±2.59e-02 (+) 6.53e+01±5.88e-02 (+) 6.54e+01±1.13e-01 (+) 6.64e+01±2.64e-02 (+) 6.27e+01±7.15e-02 (≈) 6.86e+01±6.29e-02 (+) 6.30e+01±4.25e-02
D3 6.43e+01±4.96e-02 (+) 6.31e+01±1.04e-01 (+) 6.32e+01±8.64e-02 (+) 6.53e+01±1.55e-01 (+) 6.49e+01±2.09e-01 (+) 6.32e+01±7.08e-02 (≈) 6.26e+01±3.55e-02
D4 6.27e+01±2.26e-01 (+) 6.21e+01±5.39e-02 (+) 6.21e+01±1.19e-01 (+) 6.45e+01±1.84e+00 (+) 6.46e+01±6.72e-02 (+) 6.26e+01±3.55e-02 (+) 5.48e+01±7.16e-02
D5 6.34e+01±5.99e-02 (+) 6.22e+01±7.38e-02 (+) 6.24e+01±5.28e-02 (+) 6.46e+01±6.67e-01 (+) 6.47e+01±3.28e-02 (+) 6.30e+01±4.20e-02 (+) 5.96e+01±4.27e-02

F2

D1 6.64e+01±4.39e-02 (+) 6.55e+01±8.85e-02 (+) 6.57e+01±1.10e-01 (+) 6.75e+01±1.34e+00 (+) 6.72e+01±5.99e-02 (+) 6.54e+01±4.17e-02 (+) 6.25e+01±3.69e-02
D2 6.62e+01±3.93e-01 (+) 6.45e+01±6.58e-01 (≈) 6.52e+01±1.50e-01 (+) 6.69e+01±5.75e-01 (+) 6.49e+01±7.63e-01 (+) 6.86e+01±8.61e-02 (+) 6.46e+01±1.01e-02
D3 6.55e+01±4.11e-01 (+) 6.44e+01±4.83e-01 (+) 6.46e+01±3.53e-01 (+) 6.61e+01±1.22e+00 (+) 6.59e+01±2.36e-01 (+) 6.32e+01±3.77e-02 (≈) 6.30e+01±3.46e-02
D4 6.53e+01±1.16e+00 (+) 6.48e+01±4.38e-01 (+) 6.38e+01±7.51e-01 (+) 6.63e+01±2.74e+00 (+) 6.59e+01±6.39e-01 (+) 6.26e+01±6.15e-02 (+) 6.00e+01±1.01e-02
D5 6.65e+01±1.01e+00 (+) 6.51e+01±5.24e-01 (+) 6.45e+01±2.64e-01 (+) 6.79e+01±1.80e+00 (+) 6.62e+01±3.58e-01 (+) 6.31e+01±3.26e-02 (≈) 6.23e+01±8.50e-02

F3

D1 6.64e+01±4.45e-02 (≈) 6.55e+01±1.11e-01 (-) 6.56e+01±6.11e-02 (-) 6.75e+01±2.82e+00 (+) 6.71e+01±4.53e-02 (≈) 6.55e+01±3.55e-02 (-) 6.67e+01±1.12e-02
D2 6.49e+01±7.74e-02 (+) 6.43e+01±1.44e-01 (+) 6.41e+01±2.51e-02 (+) 6.55e+01±3.86e-02 (+) 6.30e+01±3.11e-02 (≈) 5.77e+01±1.14e-01 (-) 6.24e+01±4.82e-02
D3 6.22e+01±1.03e-01 (+) 6.12e+01±1.81e-01 (≈) 6.12e+01±2.94e-02 (≈) 6.27e+01±2.18e+00 (+) 6.29e+01±8.72e-02 (+) 5.97e+01±5.86e-02 (-) 6.07e+01±5.79e-02
D4 6.12e+01±1.92e-01 (+) 6.09e+01±1.81e-01 (+) 6.10e+01±7.84e-02 (+) 6.26e+01±1.22e+00 (+) 6.28e+01±8.31e-02 (+) 6.02e+01±6.74e-02 (+) 5.37e+01±1.05e-02
D5 6.16e+01±9.66e-02 (+) 6.08e+01±1.34e-01 (+) 6.08e+01±1.48e-01 (+) 6.25e+01±9.62e-01 (+) 6.26e+01±7.38e-02 (+) 6.05e+01±3.85e-02 (+) 5.83e+01±1.12e-02

F4

D1 5.27e+00±4.00e+00 (+) 1.90e+00±8.86e-02 (+) 8.64e-01±2.74e-02 (+) 4.87e+01±1.69e+00 (+) 5.01e+01±2.45e+00 (+) 8.94e+00±1.07e-01 (+) 6.46e-04±4.85e-05
D2 4.12e+01±1.23e+01 (+) 8.25e+00±2.66e-01 (+) 6.67e+00±5.96e-02 (+) 5.86e+01±9.53e-01 (+) 2.32e+01±9.04e-01 (+) 9.56e+00±1.63e-01 (+) 3.20e+00±1.57e-01
D3 7.11e+01±4.32e+01 (+) 8.52e+00±2.86e-01 (+) 6.42e+00±1.51e-01 (+) 4.79e+01±1.13e+00 (+) 1.72e+01±1.32e+00 (+) 9.65e+00±1.22e-01 (+) 1.55e+00±2.63e-01
D4 2.68e+01±2.89e-01 (+) 1.40e+01±2.74e-01 (+) 1.44e+01±1.37e-01 (+) 4.22e+01±9.34e-01 (+) 2.30e+01±1.89e+00 (+) 1.02e+01±2.71e-01 (+) 5.19e+00±3.21e-01
D5 4.34e+01±2.08e+01 (+) 1.43e+01±3.45e-01 (+) 1.34e+01±2.85e-01 (+) 4.36e+01±1.15e+00 (+) 2.56e+01±2.55e+00 (+) 1.17e+01±1.91e-01 (+) 4.99e+00±8.57e-01

F5

D1 5.44e+01±1.60e+01 (+) 5.83e+01±2.27e+00 (+) 4.29e+01±5.86e-01 (+) 1.65e+03±1.46e+01 (+) 2.90e+03±7.20e+01 (+) 1.60e+02±1.29e+00 (+) 4.21e+01±7.54e+00
D2 1.63e+03±9.63e+02 (+) 2.09e+02±6.47e+00 (+) 1.80e+02±8.98e-01 (+) 1.37e+03±7.01e+01 (+) 1.07e+03±8.86e+01 (+) 1.96e+02±4.81e+00 (≈) 1.33e+02±5.37e+00
D3 3.88e+03±5.52e+02 (+) 2.10e+02±6.74e+00 (+) 1.61e+02±5.35e+00 (≈) 9.71e+02±9.10e+00 (+) 9.26e+02±2.40e+02 (+) 1.92e+02±2.07e+00 (+) 1.63e+02±1.33e+01
D4 3.81e+03±1.25e+03 (+) 4.77e+02±1.13e+01 (+) 4.58e+02±9.32e+00 (+) 1.56e+03±1.26e+01 (+) 1.21e+03±9.16e+01 (+) 2.83e+02±6.03e+00 (+) 1.69e+02±1.60e+01
D5 1.25e+03±4.42e+02 (+) 4.83e+02±1.24e+01 (+) 4.45e+02±1.16e+01 (+) 1.56e+03±1.58e+01 (+) 1.25e+03±6.50e+01 (+) 3.14e+02±4.08e+00 (≈) 2.06e+02±3.60e+01

F6

D1 2.11e+03±9.36e+02 (+) 1.20e+01±9.76e-02 (+) 1.13e+01±7.63e-02 (+) 2.02e+01±4.09e-02 (+) 2.11e+01±1.01e-02 (+) 1.81e+01±2.24e-02 (+) 6.65e+00±1.06e-01
D2 3.99e+01±2.65e+00 (+) 1.61e+01±4.09e-02 (≈) 1.60e+01±4.62e-02 (≈) 2.04e+01±1.68e-02 (+) 1.96e+01±3.99e-02 (+) 1.82e+01±7.82e-02 (+) 1.22e+01±1.11e-01
D3 3.62e+01±3.67e+00 (+) 1.71e+01±1.03e-01 (≈) 1.70e+01±1.21e-01 (≈) 2.04e+01±4.70e-01 (+) 1.92e+01±7.54e-02 (+) 1.82e+01±2.73e-02 (+) 1.77e+01±6.02e+00
D4 3.98e+01±1.61e+00 (+) 1.77e+01±8.53e-02 (+) 1.75e+01±1.98e-02 (+) 2.07e+01±6.30e-01 (+) 2.02e+01±8.80e-02 (+) 1.87e+01±1.58e-02 (+) 1.58e+01±3.39e-01
D5 4.08e+01±6.92e+00 (+) 1.75e+01±1.04e-01 (+) 1.74e+01±3.73e-02 (+) 2.06e+01±3.38e+00 (+) 2.02e+01±6.82e-02 (+) 1.87e+01±2.61e-02 (+) 1.57e+01±3.82e-01

F7

D1 4.96e+01±2.57e+00 (+) 9.27e-01±1.03e-02 (+) 8.51e-01±1.70e+00 (+) 9.29e-01±2.90e+00 (+) 1.01e+00±1.84e+00 (+) 6.58e-01±7.79e-02 (+) 9.86e-02±1.27e-03
D2 1.93e+00±2.65e-01 (+) 9.21e-01±9.54e-01 (+) 9.21e-01±2.78e+00 (+) 8.98e-01±1.08e-01 (+) 1.01e+00±1.97e+00 (+) 5.79e-01±2.04e+00 (+) 1.02e-01±1.52e-02
D3 1.95e+00±4.59e-01 (+) 9.62e-01±1.34e+00 (+) 9.13e-01±4.63e+00 (+) 8.95e-01±2.02e-01 (+) 1.01e+00±6.93e-01 (+) 6.11e-01±1.48e+00 (+) 1.00e-01±1.36e-02
D4 2.18e+00±5.18e-01 (+) 9.53e-01±4.40e+00 (+) 9.13e-01±1.50e-01 (+) 8.61e-01±3.71e-01 (+) 1.01e+00±1.91e+00 (+) 5.87e-01±5.19e-01 (+) 9.91e-02±1.42e-03
D5 1.71e+00±2.83e-01 (+) 9.51e-01±1.12e+00 (+) 9.10e-01±1.32e+00 (+) 8.87e-01±1.22e+00 (+) 1.01e+00±3.73e+00 (+) 7.89e-01±5.90e+00 (+) 1.01e-01±6.72e-02

F8

D1 5.04e+01±9.35e-01 (+) 5.30e+01±6.56e-01 (+) 5.22e+01±2.77e-01 (+) 9.22e+01±4.15e+00 (+) 1.00e+02±9.26e-01 (+) 4.75e+01±7.34e-02 (+) 4.10e+01±1.50e-02
D2 2.77e+02±1.34e-01 (+) 6.12e+01±7.01e-01 (+) 6.13e+01±2.74e-01 (+) 8.91e+01±1.26e+00 (+) 8.09e+01±9.90e-01 (+) 5.06e+01±4.60e-01 (≈) 5.09e+01±2.22e-02
D3 1.41e+02±1.76e+01 (+) 6.22e+01±1.70e-01 (+) 6.15e+01±2.38e-01 (+) 8.12e+01±4.14e+00 (+) 7.88e+01±1.19e+00 (+) 4.92e+01±8.92e-02 (-) 5.86e+01±3.07e-02
D4 1.35e+02±1.08e+01 (+) 6.55e+01±2.32e-01 (+) 6.65e+01±1.85e-01 (+) 8.29e+01±1.85e+00 (+) 8.32e+01±1.15e+00 (+) 5.29e+01±1.06e-01 (+) 5.00e+01±6.99e-02
D5 1.22e+02±1.56e+01 (+) 6.70e+01±3.62e-01 (+) 6.72e+01±8.48e-01 (+) 8.35e+01±1.04e+00 (+) 8.39e+01±1.01e+00 (+) 6.67e+01±1.93e-01 (+) 5.60e+01±1.15e-02

+/≈/- 39/1/0 35/4/1 35/4/1 40/0/0 37/3/0 30/6/4 NA
Average Rank 5.80 3.17 2.70 6.10 5.32 3.20 1.07

DDEAs, which have been reported in the literature to perform
well on problems in static environments.

The results in Table II with dimension 5 (due to space
constraints, comparison results for dimensions 10 and 20 are
presented in the Section IV-B of the supplementary material)
highlight the performance differences among these algorithms.
Notably, DASE significantly outperforms all other algorithms
across the eight instances of five drift scenarios given the
same data streams. Specifically, DASE achieves the lowest
average ranking, significantly outperforming all other DDEAs,
followed by BDDEA-LDG, DDEA-SE, and finally TT-DDEA
in descending order. The performance advantage of DASE is
particularly prominent on functions F1, F2, F4, and F8, where
the achieved values of Eoffline are several orders of magnitude
lower than those obtained by its competitors. A fundamental
strength of DASE lies in its ability to retain and reuse
knowledge from past environments. By integrating historical
populations and surrogate models into the optimization of
the current environment, DASE effectively mitigates the data
scarcity problem inherent to data stream environments. This
strategy enables DASE to construct more accurate surrogate
models at the early stages of a newly detected environment,
thus facilitating rapid and reliable convergence. In contrast,
algorithms such as BDDEA-LDG and DDEA-SE, though also
ensemble-based but only exploit information within the current
environment. This limited scope of ensemble construction
often results in sparse or biased data distributions, especially
under sudden drifts, thereby degrading model accuracy and
solution quality.

E. Comparison with SDDEAs

In this subsection, we compare our proposed DASE with
several SOTA SDDEAs (SAEF-1GP, DSE-MFS, and DETO).
A brief description of each algorithm is provided in the
Section IV-A of the supplementary material. These algorithms
provide various enhancements to the performance of SDDEAs,
achieving promising results in dynamic environments, while
overlooking the challenges posed by unknown concept drift
in the literature. In this study, we examine their performance
in dynamic environments characterized by unknown concept
drifts within data streams. In the experiment, all methods are
provided with the same number of data points to ensure a fair
comparison. Besides, note that our proposed algorithm obtain
data through passive method, whereas DETO and SAEF-1GP
actively select which data points to query, requiring new
queries for each iteration. To adapt these active-query based
SDDEAs to passive-query framework, modifications were
made to their algorithms. Specifically, for DETO, evaluations
of the best-found solution using the real fitness function were
replaced with evaluations performed using models. For SAEF-
1GP, surrogate model is updated only at the beginning of
the optimization process, with updates during the optimal
iterations removed, which aligns with [26].

1) Performance Comparison: The comparison results pre-
sented in Table II reveal the performance disparities among the
SDDEAs. As shown in the table, DASE achieves the smallest
average ranking compared to all other algorithms. Moreover,
DASE significantly outperforms the other SDDEAs in several
instances (F4, F5, F6, F7 and F8) under drift scenarios (D2,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

0 120 240 360 480 600 720 840 960 1080
Iterations

10 4
10 3
10 2
10 1
100
101
102

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(a) F4 D1

0 120 240 360 480 600 720 840 960 1080
Iterations

102

103

104

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(b) F5 D1

0 120 240 360 480 600 720 840 960 1080
Iterations

10 5
10 4
10 3
10 2
10 1
100
101
102

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(c) F4 D2

0 120 240 360 480 600 720 840 960 1080
Iterations

102

103

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(d) F5 D2

0 120 240 360 480 600 720 840 960 1080
Iterations

10 4
10 3
10 2
10 1
100
101
102

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(e) F4 D3

0 120 240 360 480 600 720 840 960 1080
Iterations

102

103

104

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(f) F5 D3

0 120 240 360 480 600 720 840 960 1080
Iterations

10 3

10 2

10 1

100

101

102

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(g) F4 D4

0 120 240 360 480 600 720 840 960 1080
Iterations

102

103

104

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(h) F5 D4

0 120 240 360 480 600 720 840 960 1080
Iterations

10 3

10 2

10 1

100

101

102

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(i) F4 D5

0 120 240 360 480 600 720 840 960 1080
Iterations

102

103

104

E o
nl

in
e

DASE DETO DSE-MFS SAEF-1GP

(j) F5 D5

Fig. 2. The convergence trajectories of Eonline on the first 40 time points of instance F4 and F5

D3, D4 and D5). The observed performance differences, which
are several orders of magnitude, demonstrate the efficiency of
our proposed algorithm in solving problems in continuously
streaming environments.

Among the compared algorithms, SAEF-1GP achieves the
second-lowest average performance. This can be attributed
to its memory-based initialization, where recent high-quality
solutions are used to generate a partially converged initial
population. As a result, SAEF-1GP performs well in F1, F2
and F3 under drift scenarios D1, D2 and D3. However, this
approach neglects scenarios where concepts from earlier envi-
ronments reappear in recurrent drift scenarios. Consequently,
the models become less reliable when limited data available,
leading to poor performance on complex problem landscapes,
particularly in F4, F5 and F7 under drifts D4 and D5. DSE-
MFS employs a model ensemble strategy, integrating models
from past environments. This approach proves effective in
drift scenarios D2, D3 and D5 for instances F4, F5, F6 and
F8. However, its weighting strategy for the ensemble relies

solely on the approximation errors of models in the current
environment, disregarding the underlying prediction similar-
ity between different environments. Consequently, DSE-MFS
performs poorly under drift D4 across all instances. While
DETO considers the prediction similarity between past and
current environments based on clustering model parameters,
it overlooks the surrogate approximation error in the cur-
rent environment. Excessive reliance on data from similar
environments can lead to inaccuracies in landscape fitting,
further exacerbated by older data derived from clustering.
Consequently, DETO fails to effectively track the dynamical
best-found solution, resulting in worse performance compared
to DSE-MFS.

To provide a more intuitive comparison of the convergence
of DASE and other SDDEAs during the optimization pro-
cess in every iteration, Fig. 2 illustrates some convergence
trajectories of the average Eonline (over 10 runs) with respect
to the number of iterations for each algorithm on instances
F4 and F5 across all drifts scenarios. It is evident from the

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

plot that, in most time points, DASE is capable of obtaining
better solutions with faster convergence compared to the other
algorithms under continuously changing environments.

After initialized, DASE starts processing the incoming data
arriving as data streams. In the case of drift D1, the drift
detection mechanism ensures that DASE identifies the absence
of a new environment. In the light of this, it continues to
use the preserved information from the current environment
for optimization. This approach maintains a smooth conver-
gence curve without sharp oscillations when new data arrives,
offering a distinct advantage over the other algorithms. In
contrast, for drifts D2, D3, D4 and D5, when a concept drift
is detected, DASE leverages the best-found populations from
past environments to initialize the optimization process for
the new environment. This strategy significantly accelerates
convergence within each environment. On the other hand,
the compared algorithms do not incorporate a drift detection
mechanism for data streams. Instead, they assume by default
that the environment changes when a new batch of data arrives,
and in that case, they perform some random initialization
strategies. As a result, their convergence curves display sharp
fluctuations at the arrival of each data batch, often leading
to deterioration in the current best-found solutions. Over-
all, DASE consistently outperforms the other algorithms by
achieving better solutions in fewer iterations across all time
points and drifts scenarios.

2) Runtime Comparison: We also conduct a practical run-
time comparison of different algorithms. As showed in Fig. 3,
DASE achieves the shortest average processing time for all
time points in the data streams among the compared SDDEAs.
Furthermore, under drift D1, DASE exhibits the lowest time
expenditure compared to other drift scenarios. This is due to
its drift detector mechanism, which allows the algorithm to
continue optimizing using the archived models when no drift
is detected, avoiding the need to construct new models. This
highlights the real-time responsiveness of DASE. For drift
scenarios D2 and D3, the time of DASE is slightly higher
compared to D1. This is because more abrupt drifts are more
likely to trigger the detection mechanism, necessitating the
frequent construction of new models to adapt to the changes.
As a result, the average processing time for these scenarios
increases slightly. Among the other algorithms, SAEF-1GP is
the second fastest. Its lower running time is primarily due
to the simplicity of its operations, as it trains only a single
GP for each batch and reuses information only from the most
recent environment. DSE-MFS, on the other hand, requires
significantly more time because it updates all the models
in its model pool based on the current data batch, a step
that is inherently time-intensive. DETO is the slowest among
the compared algorithms. Its runtime is heavily influenced
by the size of the data streams, as it employs a multi-input
GP with a large number of parameters. Additionally, DETO
involves saving and clustering models parameters from all past
environments, further increasing its computational burden.

F. Ablation Study
In this section, we analyze the contributions of the key

components introduced in DASE.

D1 D2 D3 D4 D5
Drift

103

Ti
m

e
(s

)

141
182 187 169 164

2596 2624 2632 2680 2672

614 619 618 618 618

234 241 231 231 232

DASE DETO DSE-MFS SAEF-1GP

Fig. 3. Runtime comparison among SDDEAs.

1) Key Components Analysis: At first, we conduct a com-
parative study between DASE and its several variants, detailed
as follows.

• DASE-w/o-L3: This variant excludes the confidence level
L3 from the drift detector in DASE. In the drift detect
module, only confidence levels L1 and L2 are used as
the warning intervals for drift detection.

• DASE-w/o-L3&L2: This variant excludes both confi-
dence levels L3 and L2 from DASE. Only confidence
level L1 is employed to calculate the warning interval
for identifying concept drift in data streams.

• DASE-w/o-AdaK: This variant excludes the adaptive
knowledge transfer mechanism (AdaK) and assigns the
weights for each past environment in equal.

• DASE-w/o-WEM: In this variant, the module for the
weighted ensemble of models (WEM) from past envi-
ronments, based on their similarity to the current en-
vironment, is removed. Only the model constructed in
the current environment is used as the surrogate for the
optimization process.

• DASE-w/o-WRP: This variant omits the weighted reuse
of populations (WRP) from past environments as the
initial population for the current environment is removed.
Consequently, only a randomly sampled population is
used as the initial population for the optimization process
in the current environment.

The result of the experiment is shown as Table III, and our
discussion of the experimental results is presented below.

DASE outperforms all of other variants in almost all in-
stances across different drift scenarios. This demonstrates the
effectiveness of our approach, which combines drift detection
with a warm-start strategy for the current environment. By
reusing information stored in the archive from past environ-
ments, our method significantly enhances SDDEAs for solving
problems in dynamic environments under data streams.

Both DASE-w/o-L3 and DASE-w/o-L3&L2 perform worse
than DASE in most cases. This indicates that the HCDD,
which leverages three confidence levels, is effective at detect-
ing varying degrees concept drift under diverse data stream
characteristics. The absence of L2 and L3 reduce sensitivity
to larger distribution shifts, making it detrimental for detecting
significant drifts. When only L3 is removed, the HCDD strug-

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE III
THE ABLATION STUDY RESULT

Instance Drift DASE-w/o-L3 DASE-w/o-L3&L2 DASE-w/o-AdaK DASE-w/o-WEM DASE-w/o-WRP DASE

F1

D1 6.09e+01±2.68e-02 (≈) 6.19e+01±4.57e-02 (+) 6.63e+01±4.05e-02 (+) 6.26e+01±2.46e-02 (+) 6.44e+01±3.94e-02 (+) 6.05e+01±2.83e-02
D2 6.31e+01±2.54e-02 (≈) 6.42e+01±4.50e-02 (+) 6.30e+01±1.03e-02 (≈) 6.44e+01±6.13e-02 (+) 6.48e+01±7.94e-02 (+) 6.30e+01±4.25e-02
D3 6.27e+01±6.59e-02 (≈) 6.45e+01±8.76e-02 (+) 6.32e+01±4.69e-02 (+) 6.38e+01±3.81e-02 (+) 6.38e+01±9.03e-02 (+) 6.26e+01±3.55e-02
D4 6.04e+01±6.50e-02 (+) 6.32e+01±6.22e-02 (+) 6.00e+01±7.73e-02 (+) 6.45e+01±1.07e-02 (+) 6.62e+01±1.17e-02 (+) 5.48e+01±7.16e-02
D5 6.25e+01±8.25e-02 (+) 6.86e+01±4.08e-02 (+) 6.01e+01±7.52e-02 (+) 6.31e+01±7.01e-02 (+) 6.74e+01±2.29e-02 (+) 5.96e+01±4.27e-02

F2

D1 6.43e+01±2.35e-02 (+) 6.63e+01±3.69e-02 (+) 6.65e+01±8.42e-02 (+) 6.65e+01±2.12e-02 (+) 6.66e+01±3.66e-02 (+) 6.25e+01±3.69e-02
D2 6.47e+01±5.61e-02 (≈) 6.48e+01±3.70e-02 (≈) 6.48e+01±8.02e-02 (≈) 6.52e+01±6.19e-02 (+) 6.50e+01±2.18e-02 (+) 6.46e+01±1.01e-02
D3 6.33e+01±3.65e-02 (≈) 6.32e+01±9.87e-02 (≈) 6.39e+01±1.46e-02 (+) 6.46e+01±4.69e-01 (+) 6.43e+01±8.71e-01 (+) 6.30e+01±3.46e-02
D4 6.19e+01±1.51e-02 (+) 6.18e+01±2.04e-02 (+) 6.21e+01±6.60e-02 (+) 6.08e+01±1.76e-02 (+) 6.22e+01±2.03e-02 (+) 6.00e+01±1.01e-02
D5 6.37e+01±5.52e-02 (+) 6.42e+01±2.12e-02 (+) 6.44e+01±1.97e-02 (+) 6.29e+01±3.19e-02 (+) 6.24e+01±4.73e-02 (≈) 6.23e+01±8.50e-02

F3

D1 6.86e+01±1.38e-02 (+) 6.87e+01±5.16e-02 (+) 6.70e+01±1.42e-02 (≈) 6.91e+01±3.26e-02 (+) 6.69e+01±2.26e-01 (≈) 6.67e+01±1.12e-02
D2 6.31e+01±1.19e-02 (+) 6.38e+01±3.87e-02 (+) 6.26e+01±4.49e-02 (≈) 6.32e+01±5.78e-02 (+) 6.28e+01±2.23e-02 (+) 6.24e+01±4.82e-02
D3 6.26e+01±9.20e-02 (+) 6.31e+01±7.45e-02 (+) 6.08e+01±7.55e-02 (≈) 6.12e+01±6.68e-02 (+) 6.11e+01±2.98e-02 (≈) 6.07e+01±5.79e-02
D4 6.09e+01±1.28e-02 (+) 6.14e+01±7.92e-02 (+) 5.51e+01±1.24e-02 (+) 5.88e+01±1.08e-02 (+) 5.94e+01±5.27e-02 (+) 5.37e+01±1.05e-02
D5 5.89e+01±9.16e-02 (≈) 5.88e+01±3.45e-02 (≈) 5.91e+01±4.59e-02 (+) 5.88e+01±5.28e-02 (≈) 5.90e+01±2.55e-02 (+) 5.83e+01±1.12e-02

F4

D1 2.73e-03±1.01e-04 (+) 3.72e-03±6.92e-04 (+) 3.33e-03±5.58e-04 (+) 1.02e-03±4.83e-04 (+) 1.39e-01±1.39e-04 (+) 6.46e-04±4.85e-05
D2 3.34e+00±2.55e-01 (+) 3.67e+00±1.58e-01 (+) 3.25e+00±1.28e-01 (≈) 4.32e+00±4.83e-01 (+) 3.30e+00±2.55e-01 (≈) 3.20e+00±1.57e-01
D3 2.13e+00±8.07e-01 (+) 2.95e+00±3.18e-01 (+) 2.71e+00±3.81e-01 (+) 3.55e+00±7.26e-01 (+) 1.99e+00±8.23e-01 (+) 1.55e+00±2.63e-01
D4 5.83e+00±6.72e-01 (+) 5.42e+00±6.30e-01 (+) 5.37e+00±9.13e-01 (+) 5.33e+00±5.00e-01 (+) 5.24e+00±5.88e-01 (≈) 5.19e+00±3.21e-01
D5 5.00e+00±8.05e-01 (≈) 5.07e+00±9.22e-01 (+) 5.53e+00±4.80e-01 (+) 5.83e+00±3.56e-01 (+) 5.01e+00±5.94e-01 (≈) 4.99e+00±8.57e-01

F5

D1 4.90e+01±3.04e+00 (+) 4.47e+01±3.95e+00 (+) 4.26e+01±3.14e+00 (≈) 4.66e+01±3.04e+00 (+) 4.56e+01±1.77e+00 (+) 4.21e+01±7.54e+00
D2 1.33e+02±1.30e+01 (≈) 1.43e+02±1.20e+01 (+) 1.48e+02±1.70e+01 (+) 1.84e+02±1.30e+01 (+) 1.57e+02±3.03e+00 (+) 1.33e+02±5.37e+00
D3 1.93e+02±3.01e+01 (+) 1.79e+02±7.35e+01 (+) 1.92e+02±4.82e+01 (+) 3.24e+02±4.38e+01 (+) 2.57e+02±1.15e+02 (+) 1.63e+02±1.33e+01
D4 1.95e+02±2.88e+01 (+) 1.88e+02±1.71e+01 (+) 2.48e+02±4.48e+01 (+) 2.60e+02±3.00e+01 (+) 2.07e+02±3.60e+01 (+) 1.69e+02±1.60e+01
D5 2.09e+02±2.92e+01 (≈) 2.15e+02±5.03e+01 (+) 3.04e+02±1.59e+01 (+) 3.30e+02±2.96e+01 (+) 2.20e+02±2.05e+01 (+) 2.06e+02±3.60e+01

F6

D1 6.77e+00±5.04e-01 (+) 6.82e+00±7.44e-01 (+) 6.66e+00±5.04e-01 (≈) 8.08e+00±9.81e-01 (+) 6.66e+00±4.45e-01 (≈) 6.65e+00±1.06e-01
D2 1.31e+01±4.28e-01 (+) 1.55e+01±9.08e-01 (+) 1.23e+01±4.27e-01 (≈) 1.23e+01±3.75e-01 (≈) 1.24e+01±3.17e-01 (≈) 1.22e+01±1.11e-01
D3 1.89e+01±2.19e+00 (+) 2.01e+01±1.59e+00 (+) 1.98e+01±1.18e+00 (+) 1.86e+01±7.47e-01 (+) 1.85e+01±1.23e+00 (+) 1.77e+01±6.02e+00
D4 1.58e+01±3.27e-01 (≈) 1.62e+01±6.58e-01 (≈) 1.60e+01±5.18e-01 (≈) 1.63e+01±2.60e-01 (≈) 1.59e+01±2.24e-01 (≈) 1.58e+01±3.39e-01
D5 1.59e+01±4.32e-01 (≈) 1.69e+01±3.66e-01 (+) 1.59e+01±4.33e-01 (≈) 1.66e+01±3.27e-01 (+) 1.63e+01±6.08e-01 (+) 1.57e+01±3.82e-01

F7

D1 1.55e-01±6.41e-02 (+) 1.44e-01±7.11e-02 (+) 9.77e-01±3.03e-02 (+) 1.77e-01±1.02e-02 (+) 1.94e-01±2.10e-02 (+) 9.86e-02±1.27e-03
D2 2.00e-01±2.34e-02 (+) 2.30e-01±1.55e-02 (+) 1.00e+00±1.55e-01 (+) 2.01e-01±1.88e-02 (+) 2.22e-01±2.40e-02 (+) 1.02e-01±1.52e-02
D3 1.69e-01±1.48e-02 (+) 1.88e-01±1.80e-02 (+) 1.02e+00±1.78e-01 (+) 1.98e-01±1.49e-02 (+) 2.35e-01±1.32e-02 (+) 1.00e-01±1.36e-02
D4 1.01e-01±1.87e-02 (+) 1.51e-01±1.22e-02 (+) 1.01e+00±1.65e-02 (+) 1.30e-01±4.19e-02 (+) 1.92e-01±5.18e-02 (+) 9.91e-02±1.42e-03
D5 1.11e-01±2.88e-02 (+) 1.21e+00±1.29e-02 (+) 1.00e+00±7.11e-02 (+) 1.54e+00±1.17e-02 (+) 1.01e+00±3.12e-02 (+) 1.01e-01±6.72e-02

F8

D1 4.95e+01±4.14e-02 (+) 4.65e+01±8.90e-02 (+) 4.11e+01±3.46e-02 (≈) 4.62e+01±2.47e-02 (+) 4.87e+01±6.27e-02 (+) 4.10e+01±1.50e-02
D2 5.57e+01±4.20e-02 (+) 5.72e+01±2.44e-02 (+) 5.33e+01±2.26e-02 (+) 5.48e+01±1.29e-02 (+) 5.37e+01±2.74e-02 (+) 5.09e+01±2.22e-02
D3 5.96e+01±3.10e-02 (+) 6.98e+01±1.81e-02 (+) 5.87e+01±2.11e-02 (≈) 6.15e+01±2.34e-02 (+) 5.87e+01±1.27e-02 (≈) 5.86e+01±2.22e-02
D4 5.34e+01±1.02e-02 (+) 5.59e+01±1.42e-02 (+) 5.13e+01±1.93e-02 (+) 5.60e+01±1.11e-02 (+) 5.12e+01±1.12e-02 (+) 5.00e+01±6.99e-02
D5 5.99e+01±1.34e-02 (+) 6.10e+01±9.64e-02 (+) 5.76e+01±1.32e-02 (+) 6.23e+01±8.49e-02 (+) 6.15e+01±6.94e-02 (+) 5.60e+01±1.15e-02

+/≈/- 29/11/0 36/4/0 27/13/0 37/3/0 30/10/0 NA
Average Rank 2.58 4.12 3.87 3.90 4.58 1.00

gles to identify larger-magnitude drifts, leading to noticeable
performance degradation.

DASE-w/o-AdaK performs worse than DASE, highlighting
the effectiveness of adaptive knowledge transfer. This mech-
anism assigns higher weights to past environments that are
more similar to the current environment, thereby facilitating
the reuse of more relevant and useful knowledge.

DASE-w/o-WEM underperforms DASE, particularly under
drifts D4 and D5. This underscores the value of using en-
sembles of models from similar past environments to improve
the model accuracy. The recurrence of similar environments
provides additional landscape information that significantly en-
hances optimization performance in the current environment.

DASE-w/o-WRP exhibits inferior performance compared to
DASE. This demonstrates that reusing the best-found solutions
from similar past environments boosts optimization in the
current environment. By initializing populations with some
degree of convergence and diversity, WRP contributes to
improved performance.

2) In-Depth Analysis of HCDD: We compare HCDD with
traditional methods like DDM [48] and EDDM [49] to an-
alyze its drift detection performance more thoroughly. Since
DDM and EDDM are originally designed for classification
tasks rather than optimization problems, we adapt DDM for
regression setting following the approach in [53]. For EDDM,
we replace the classification error with a regression error rate

(Eq. 1). Specifically, we define an error sample based on
a predefined error threshold and then compute the distance
between such error samples.

The comparison results are summarized in Table IV, where
we report the precision of drift detection, defined as:

Precision =
TP

TP + FP
(8)

where, TP denotes the number of true positives (correctly
identified drift time points), and FP denotes the number of
false positives (incorrect drift alarms). Precision is chosen
as the primary evaluation metric in this study because it
directly reflects the reliability of drift detection –that is, the
likelihood that a detected drift corresponds to an true concept
drift. In optimization problems under continuously streaming
environments, false positives can trigger unnecessary model
resets or update, which may hinder the optimization process.
Hence, maintaining high precision is essential for preserving
the stability and efficiency of the algorithm.

As shown in Table IV, both DDM and EDDM show
limited effectiveness in this setting. These methods are origi-
nally tailored for classification tasks with discrete, bounded
outputs and Bernoulli-distributed errors assumptions. They
are well-suited for detecting changes in classification error
but do not fit well to optimization tasks. In contrast, op-
timization problems usually involve a unbounded objective

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE IV
THE PRECISION OF DRIFT DETECTION RESULTS ON BENCHMARK

INSTANCES F1–F8 IS REPORTED UNDER DRIFT SCENARIOS D2–D5
(SCENARIO D1 IS EXCLUDED FROM EVALUATION, AS IT CONTAINS NO

TRUE DRIFT TIME POINTS).

Ins. Drift HCDD DDM EDDM Ins. Drift HCDD DDM EDDM

F1

D2 0.92 0.15 0.10

F5

D2 0.86 0.16 0.11
D3 0.99 0.14 0.10 D3 0.85 0.14 0.10
D4 0.98 0.14 0.10 D4 0.85 0.14 0.11
D5 0.98 0.13 0.10 D5 0.82 0.14 0.11

F2

D2 0.97 0.16 0.10

F6

D2 0.82 0.16 0.11
D3 0.96 0.14 0.10 D3 0.82 0.14 0.10
D4 0.94 0.13 0.10 D4 0.82 0.13 0.11
D5 0.90 0.14 0.10 D5 0.78 0.14 0.11

F3

D2 0.90 0.15 0.11

F7

D2 0.79 0.15 0.10
D3 0.92 0.14 0.10 D3 0.78 0.14 0.11
D4 0.88 0.13 0.10 D4 0.75 0.13 0.10
D5 0.89 0.13 0.11 D5 0.75 0.13 0.10

F4

D2 0.88 0.16 0.11

F8

D2 0.74 0.15 0.10
D3 0.88 0.13 0.11 D3 0.74 0.14 0.10
D4 0.87 0.14 0.10 D4 0.75 0.14 0.11
D5 0.87 0.14 0.11 D5 0.75 0.13 0.10

values, making them inherently regression-like. The prediction
errors in such scenarios are varying with infinite possibilities
and exhibit large variability due to the complexity of the
fitness landscape. As a result, these traditional methods are
more sensitive to individual instances, and their “one-hit-then-
detect” mechanisms often lead to false positives when ap-
plied directly to optimization tasks, resulting in low detection
precision. In comparison, HCDD is specifically designed to
address the limitations of traditional drift detectors in data-
driven optimization in continuously streaming environments.
HCDD treats prediction errors as Gaussian-like variables –
better suited for regression-type problems in optimization.
It employs a hierarchical tri-level confidence mechanism to
detect both sudden and incremental drifts, improving accuracy
while reducing false positives. Furthermore, it incorporates
a moving window with a multiple-hit confirmation strategy,
which improves robustness by suppressing false positives
caused by approximation errors from single instance.

G. Parameter Sensitivity Analysis

This section is dedicated to conducting a comprehensive
sensitivity analysis of several key parameters related to the
HCDD and warm start mechanism, aiming to offer insight
into the parameter settings and their influence on performance.
In addition, the analysis of parameters kc (number of RBF
centers) and np (population size) is provided in Section
IV-C of the supplementary material. As for the remaining
parameters, they are empirically set based on well-established
conventions in the field of EAs and SDDEAs [13], [15], [25],
[26], [55], [56].

1) Parameters in HCDD: |MW | represents the size of the
moving window, and β is a level factor that determines the
maximum hit limit for the HCDD mechanism, thereby affect-
ing its drift detection sensitivity. We conducted experiments
with the following settings: |MW | ∈ {30, 50, 100, 300} and
β ∈ {5, 10, 20}. Our investigation results shown in Fig. 4. It
can be observed that a small size of moving window may not
capture sufficient statistics to characterize the current environ-
ment accurately, leading to unreliable detection. Conversely,
a large size of moving window may dilute the sensitivity to

5 10 20
Level factor for hit limits ()

30
50

10
0

30
0

M
ov

in
g

wi
nd

ow
 si

ze
 (|

M
W

|)

5.32 4.43 6.67

5.67 2.70 5.37

4.93 3.33 5.33

4.27 4.07 5.97

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Av
er

ag
e

ra
nk

Fig. 4. Parameter sensitivity analysis of β and |MW |

change, especially when a window spans multiple environ-
ments, which makes the detected distribution less reflective of
the present environment. Regarding β, a higher value leads
to reduced sensitivity, potentially missing subtle drifts. In
contrast, a lower value can result in an increased false positive
rate due to the rise of the false positive.

2) Parameter in Bi-level Warm Start: The parameter
arcmax denotes the maximum size of the archive and
directly influences the degree of information reuse from
previous environments. Fig. 5 illustrates the Eoffline val-
ues obtained when arcmax is varied across the range
{1, 5, 10, 15, 20, 30, 40, 50, 60}. As shown in the figure,
Eoffline decreases progressively as arcmax increases up to
30, indicating improved performance due to more effective
reuse of archived knowledge. However, beyond this point, the
performance gain plateaus, and no significant improvement is
observed with further increases. Meanwhile, increasing arcmax

implies a greater computational resources consumption in the
ensemble. Hence, to strike a balance between computational
resources and optimization performance, we set arcmax = 30
in DASE.

V. CONCLUSION

In this paper, we present DASE, a novel drift-aware stream-
ing evolutionary algorithm designed to tackle optimization
challenges in continuously streaming environments with un-
known concept drifts. DASE is first characterized by the
HCDD that operates on continuously streaming data for drift
detection. It employs a tri-level confidence strategy with a
multiple-hit confirmation approach, enabling precise drift de-
tection by minimizing false positives and effectively adapting
to varying degrees of concept drift. In addition, a warm-start
strategy for new environments is introduced, combined with
an adaptive knowledge transfer mechanism through the archive
strategy. This approach provides an effective method for opti-
mization in dynamic environment, maintaining solution diver-
sity and enhancing the adaptability of the optimization process.
To balance past and present information, only a limited amount
of the most recent environment information is stored in the
archive, taking storage constraints into account. Historical
information from past environments is reused in two ways

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

0 10 20 30 40 50 60
The maximum number of environments stored in the archive(arcmax)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

E o
ffl

in
e

(a) F4 D1

0 10 20 30 40 50 60
The maximum number of environments stored in the archive(arcmax)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

E o
ffl

in
e

(b) F4 D2

0 10 20 30 40 50 60
The maximum number of environments stored in the archive(arcmax)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

E o
ffl

in
e

(c) F4 D3

0 10 20 30 40 50 60
The maximum number of environments stored in the archive(arcmax)

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

E o
ffl

in
e

(d) F4 D4

0 10 20 30 40 50 60
The maximum number of environments stored in the archive(arcmax)

4.50

4.75

5.00

5.25

5.50

5.75

6.00

6.25

E o
ffl

in
e

(e) F4 D5

Fig. 5. Parameter sensitivity of arcmax

based on their assigned weights, which reflect their similarity
to the current environment. The first is through a weighted
ensemble of models, and the second is via weighted reuse of
the best populations. Knowledge from past environments with
higher similarity is prioritized, facilitating optimization in the
current environment.

Experimental results on benchmark problems demonstrate
the superiority of DASE over SOTA SDDEAs and DDEAs.
Our proposed algorithm achieves faster convergence and
higher solution quality across diverse problem instances and
drift scenarios. The runtime analysis further highlights DASE’s
computational efficiency, particularly in handling problems
under continuously streaming environments where timely re-
sponsiveness is critical. Overall, DASE present a promising
solution to address the inherent challenges and limitations
of current SDDEAs. Looking ahead, it would be valuable to
extend the framework to more complex scenarios, particularly
in multi-objective and high-dimensional settings, to further
explore its adaptability and potential in these challenging
environments.

REFERENCES

[1] T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,” IEEE transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 3–17, 1997.

[2] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms in multiobjective optimization,” Evolutionary computation, vol. 3,
no. 1, pp. 1–16, 1995.

[3] W. Li, T. Zhang, R. Wang, S. Huang, and J. Liang, “Multimodal
multi-objective optimization: Comparative study of the state-of-the-art,”
Swarm and Evolutionary Computation, vol. 77, p. 101253, 2023.

[4] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over two
decades—part a,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 4, pp. 609–629, 2021.

[5] S. Liu, Q. Lin, J. Li, and K. C. Tan, “A survey on learnable evolutionary
algorithms for scalable multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 27, no. 6, pp. 1941–1961, 2023.

[6] Z. Ma, H. Guo, Y.-J. Gong, J. Zhang, and K. C. Tan, “Toward automated
algorithm design: A survey and practical guide to meta-black-box-
optimization,” IEEE Transactions on Evolutionary Computation, 2025.

[7] A. Kumar, A. Yazdanbakhsh, M. Hashemi, K. Swersky, and S. Levine,
“Data-driven offline optimization for architecting hardware accelerators,”
in ICLR 2022, Feb. 2022.

[8] Q. Ye, H. Cai, and Y. Bian, “Ensemble-based offline data-driven evolu-
tionary optimization for operation parameter of blast furnace,” in 2024
20th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD). IEEE, 2024, pp. 1–7.

[9] H. Wang, Y. Jin, and J. O. Jansen, “Data-driven surrogate-assisted
multiobjective evolutionary optimization of a trauma system,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 6, pp. 939–952,
2016.

[10] T. Chugh, N. Chakraborti, K. Sindhya, and Y. Jin, “A data-driven
surrogate-assisted evolutionary algorithm applied to a many-objective
blast furnace optimization problem,” Materials and Manufacturing Pro-
cesses, vol. 32, no. 10, pp. 1172–1178, 2017.

[11] Y. Jin, H. Wang, and C. Sun, Data-Driven Evolutionary Optimization:
Integrating Evolutionary Computation, Machine Learning and Data
Science, ser. Studies in Computational Intelligence. Cham: Springer
International Publishing, 2021, vol. 975.

[12] Y.-H. Sun, T. Huang, J.-H. Zhong, J. Zhang, and Y.-J. Gong, “Symbolic
regression-assisted offline data-driven evolutionary computation,” IEEE
Transactions on Evolutionary Computation, 2024.

[13] H.-G. Huang and Y.-J. Gong, “Contrastive learning: An alternative
surrogate for offline data-driven evolutionary computation,” IEEE Trans-
actions on Evolutionary Computation, vol. 27, no. 2, pp. 370–384, 2022.

[14] Z. Liu, H. Wang, and Y. Jin, “Performance indicator-based adaptive
model selection for offline data-driven multiobjective evolutionary opti-
mization,” IEEE transactions on cybernetics, vol. 53, no. 10, pp. 6263–
6276, 2022.

[15] Y.-J. Gong, Y.-T. Zhong, and H.-G. Huang, “Offline data-driven op-
timization at scale: A cooperative coevolutionary approach,” IEEE
Transactions on Evolutionary Computation, vol. 28, no. 6, pp. 1809–
1823, 2024.

[16] X.-R. Zhang, Y.-J. Gong, Z. Cao, and J. Zhang, “Island-based evolution-
ary computation with diverse surrogates and adaptive knowledge transfer
for high-dimensional data-driven optimization,” ACM Transactions on
Evolutionary Learning, 2024.

[17] M. L. Peixoto, E. Mota, A. H. Maia, W. Lobato, M. A. Salahuddin,
R. Boutaba, and L. A. Villas, “Fogjam: a fog service for detecting traffic
congestion in a continuous data stream vanet,” Ad Hoc Networks, vol.
140, p. 103046, 2023.

[18] X. Chen, J. Wang, and K. Xie, “Trafficstream: A streaming traffic flow
forecasting framework based on graph neural networks and continual
learning,” IJCAI, 2021.

[19] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, pp. 1–37, Apr. 2014.

[20] E. Osekowska, H. Johnson, and B. Carlsson, “Maritime vessel traffic
modeling in the context of concept drift,” Transportation research
procedia, vol. 25, pp. 1457–1476, 2017.

[21] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine learning, vol. 23, pp. 69–101, 1996.

[22] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, 2017.

[23] Y. Zhong, X. Wang, Y. Sun, and Y.-J. Gong, “Sddobench: A bench-
mark for streaming data-driven optimization with concept drift,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
Melbourne VIC Australia: ACM, Jul. 2024, pp. 59–67.

[24] W. Luo, R. Yi, B. Yang, and P. Xu, “Surrogate-assisted evolutionary
framework for data-driven dynamic optimization,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 3, no. 2, pp.
137–150, 2018.

[25] K. Li, R. Chen, and X. Yao, “A data-driven evolutionary transfer
optimization for expensive problems in dynamic environments,” IEEE
Transactions on Evolutionary Computation, 2023.

[26] C. Yang, J. Ding, Y. Jin, and T. Chai, “A data stream ensemble assisted
multifactorial evolutionary algorithm for offline data-driven dynamic
optimization,” Evolutionary Computation, vol. 31, no. 4, pp. 433–458,
2023.

[27] H. Zhang, J. Ding, L. Feng, K. C. Tan, and K. Li, “Solving expensive
optimization problems in dynamic environments with meta-learning,”
IEEE Transactions on Cybernetics, 2024.

[28] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu, “Tencentrec: Real-
time stream recommendation in practice,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data.
Melbourne Victoria Australia: ACM, May 2015, pp. 227–238.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[29] M. Fedoryszak, B. Frederick, V. Rajaram, and C. Zhong, “Real-time
event detection on social data streams,” in Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining, 2019, pp. 2774–2782.

[30] J. Mou, K. Gao, P. Duan, J. Li, A. Garg, and R. Sharma, “A machine
learning approach for energy-efficient intelligent transportation schedul-
ing problem in a real-world dynamic circumstances,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 12, pp. 15 527–15 539,
2023.

[31] S. Liu, H. Wang, W. Peng, and W. Yao, “A surrogate-assisted evolu-
tionary feature selection algorithm with parallel random grouping for
high-dimensional classification,” IEEE Transactions on Evolutionary
Computation, vol. 26, no. 5, pp. 1087–1101, 2022.

[32] B. H. Nguyen, B. Xue, and M. Zhang, “A constrained competitive swarm
optimizer with an svm-based surrogate model for feature selection,”
IEEE Transactions on Evolutionary Computation, vol. 28, no. 1, pp.
2–16, 2022.

[33] T. Sonoda and M. Nakata, “Multiple classifiers-assisted evolutionary
algorithm based on decomposition for high-dimensional multiobjective
problems,” IEEE Transactions on Evolutionary Computation, vol. 26,
no. 6, pp. 1581–1595, 2022.

[34] L. Xie, G. Li, Z. Wang, L. Cui, and M. Gong, “Surrogate-assisted evo-
lutionary algorithm with model and infill criterion auto-configuration,”
IEEE Transactions on Evolutionary Computation, vol. 28, no. 4, pp.
1114–1126, Aug. 2024.

[35] K. Zhao, X. Wang, C. Sun, Y. Jin, and A. Hayat, “Efficient large-scale
expensive optimization via surrogate-assisted sub-problem selection,”
IEEE Transactions on Evolutionary Computation, pp. 1–1, 2025.

[36] X. Wu, Q. Lin, J. Li, K. C. Tan, and V. C. Leung, “An ensemble
surrogate-based coevolutionary algorithm for solving large-scale expen-
sive optimization problems,” IEEE Transactions on Cybernetics, vol. 53,
no. 9, pp. 5854–5866, 2022.

[37] L. Pan, C. He, Y. Tian, H. Wang, X. Zhang, and Y. Jin, “A classification-
based surrogate-assisted evolutionary algorithm for expensive many-
objective optimization,” IEEE Transactions on Evolutionary Computa-
tion, vol. 23, no. 1, pp. 74–88, 2018.

[38] L. Yu, Z. Meng, and H. Zhu, “A hierarchical surrogate-assisted dif-
ferential evolution with core space localization,” IEEE Transactions on
Cybernetics, 2024.

[39] Y. Yuan and W. Banzhaf, “Expensive multiobjective evolutionary op-
timization assisted by dominance prediction,” IEEE Transactions on
Evolutionary Computation, vol. 26, no. 1, pp. 159–173, 2021.

[40] L. Zhao, Y. Hu, B. Wang, X. Jiang, C. Liu, and C. Zheng, “A surrogate-
assisted evolutionary algorithm based on multi-population clustering and
prediction for solving computationally expensive dynamic optimization
problems,” Expert Systems with Applications, vol. 223, p. 119815, Aug.
2023.

[41] X. Wu, S. Liu, J. Ji, L. Ma, and V. C. M. Leung, “A surrogate-assisted
evolutionary algorithm for expensive dynamic multimodal optimzation,”
in 2024 IEEE Congress on Evolutionary Computation (CEC), Jun. 2024,
pp. 1–8.

[42] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 226–235.

[43] N. Lu, G. Zhang, and J. Lu, “Concept drift detection via competence
models,” Artificial Intelligence, vol. 209, pp. 11–28, 2014.

[44] R. F. de Mello, Y. Vaz, C. H. Grossi, and A. Bifet, “On learning
guarantees to unsupervised concept drift detection on data streams,”
Expert Systems with Applications, vol. 117, pp. 90–102, 2019.

[45] Z. Cai, R. Jiang, X. Yang, Z. Wang, D. Guo, H. Kobayashi, X. Song,
and R. Shibasaki, “Memda: forecasting urban time series with memory-
based drift adaptation,” arXiv preprint arXiv:2309.14216, 2023.

[46] F. Hinder, V. Vaquet, and B. Hammer, “One or two things we know
about concept drift—a survey on monitoring in evolving environments.
part a: detecting concept drift,” Frontiers in Artificial Intelligence, vol. 7,
p. 1330257, 2024.

[47] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1–1, 2018.

[48] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in 17th Brazilian Symposium on Artificial Intelligence. Sao
Luis, Maranhao, Brazil: Springer, September 29-Ocotber 1 2004, pp.
286–295.

[49] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, “Early drift detection method,” in 14th inter-

national workshop on knowledge discovery from data streams, vol. 6.
Citeseer, 2006, pp. 77–86.

[50] I. Frias-Blanco, J. D. Campo-Avila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, Mar. 2015.

[51] A. Liu, G. Zhang, and J. Lu, “Fuzzy time windowing for gradual
concept drift adaptation,” in 2017 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). IEEE, 2017, pp. 1–6.

[52] A. L. Suárez-Cetrulo, D. Quintana, and A. Cervantes, “A survey on
machine learning for recurring concept drifting data streams,” Expert
Systems with Applications, vol. 213, p. 118934, 2023.

[53] R. C. Cavalcante and A. L. Oliveira, “An approach to handle concept
drift in financial time series based on extreme learning machines and
explicit drift detection,” in 2015 international joint conference on neural
networks (IJCNN). IEEE, 2015, pp. 1–8.

[54] H. Wang, Y. Jin, C. Sun, and J. Doherty, “Offline data-driven evolution-
ary optimization using selective surrogate ensembles,” IEEE Transac-
tions on Evolutionary Computation, vol. 23, no. 2, pp. 203–216, Apr.
2019.

[55] J.-Y. Li, Z.-H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-
driven evolutionary algorithm with localized data generation,” IEEE
Transactions on Evolutionary Computation, vol. 24, no. 5, pp. 923–937,
2020.

[56] P. Huang, H. Wang, and Y. Jin, “Offline data-driven evolutionary opti-
mization based on tri-training,” Swarm and Evolutionary Computation,
vol. 60, p. 100800, Feb. 2021.

[57] M. Stein, “Large sample properties of simulations using latin hypercube
sampling,” Technometrics, vol. 29, no. 2, pp. 143–151, 1987.

[58] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance
analysis,” Journal of the American statistical Association, vol. 47, no.
260, pp. 583–621, 1952.

[59] C. W. Dunnett, “A multiple comparison procedure for comparing several
treatments with a control,” Journal of the American Statistical Associa-
tion, vol. 50, no. 272, pp. 1096–1121, 1955.

[60] J. M. Bland and D. G. Altman, “Multiple significance tests: the bonfer-
roni method,” Bmj, vol. 310, no. 6973, p. 170, 1995.

Yuan-Ting Zhong received her bachelor’s degree
in Information Security from the South China Uni-
versity of Technology, Guangzhou, China, in 2023,
where she is currently pursuing the Ph.D. degree
with the School of Computer Science and Engineer-
ing. Her current research interests include evolution-
ary computation and data-driven optimization.

Yue-Jiao Gong (S’10-M’15-SM’19) received the
B.S. and Ph.D. degrees in Computer Science from
Sun Yat-sen University, China, in 2010 and 2014,
respectively. She is currently a Full Professor at the
School of Computer Science and Engineering, South
China University of Technology, China. Her re-
search interests include optimization methods based
on swarm intelligence, deep learning, reinforcement
learning, and their applications in smart cities and
intelligent transportation. She has published over
100 papers, including more than 50 in ACMIEEE

TRANSACTIONS and over 50 at renowned conferences such as NeurIPS,
ICLR, and GECCO. Dr. Gong was awarded the Pearl River Young Scholar by
the Guangdong Education Department in 2017 and the Guangdong Natural
Science Funds for Distinguished Young Scholars in 2022. She currently serves
as Associate Editor of IEEE Transactions on Evolutionary Computation.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2025.3589643

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on August 12,2025 at 02:16:49 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background and Related work
	Problem Definition
	From DDEAs to SDDEAs
	Concept Drift in Data Streams and Handling Approaches

	Proposed Algorithm
	Framework
	Hierarchical Confidence Drift Detector
	Archiving Strategy
	Adaptive Knowledge Transfer
	Bi-Level Warm Start
	Complexity Analysis

	Experiments
	Experiment Setup
	Algorithmic Settings
	Performance Metrics
	Comparison with DDEAs
	Comparison with SDDEAs
	Performance Comparison
	Runtime Comparison

	Ablation Study
	Key Components Analysis
	In-Depth Analysis of HCDD

	Parameter Sensitivity Analysis
	Parameters in HCDD
	Parameter in Bi-level Warm Start

	Conclusion
	References
	Biographies
	Yuan-Ting Zhong
	Yue-Jiao Gong

